首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   2篇
林业   4篇
基础科学   1篇
  40篇
综合类   2篇
农作物   10篇
水产渔业   6篇
畜牧兽医   13篇
园艺   1篇
植物保护   3篇
  2023年   2篇
  2022年   1篇
  2021年   4篇
  2020年   4篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2015年   3篇
  2013年   15篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2007年   10篇
  2006年   5篇
  2005年   3篇
  2004年   2篇
  2002年   1篇
  2000年   1篇
  1999年   2篇
  1996年   2篇
排序方式: 共有80条查询结果,搜索用时 31 毫秒
41.
Microbial colonization on the surface of rice roots along with their development and degradation was examined throughout the growth period of rice plants with the naked eye, by light microscopy, and scanning electron microscopy. Four stages were recognized in the development and degradation processes of rice roots and microbial colonization pattern. At stage I, both crown and lateral roots were undergoing development, white, and covered with a mucigel layer. Microbial colonization was rarely observed. At stage II, lateral roots developed further, and they stained brownish due to the deposition of iron oxides/hydroxides on the root surface. Microbial colonies commonly developed along the grooves between epidermal cells. At stage III, lateral roots ceased to develop, and the root surfaces were widely covered with deposits of iron oxides/hydroxides. Microbial colonies were found inside epidermal and exodermal cells as well as on epidermal cells. At stage IV, the roots became dark brown or transparent. Most of the epidermal and exodermal cells disappeared from the root surface. Roots went through stage I to stage IV as they aged, and respective degradation stages were observed from the nodal roots from higher nodes to the nodal roots from lower nodes. There were fewer microorganisms on the surface of lateral roots than on crown roots. About 50% of the roots were at stages I and II on June 20 and July 20, which corresponded to the early to middle growth stages, while most of the roots were at stages III or IV from August 10.  相似文献   
42.
Abstract

To analyze in greater detail the fate and behavior of toxic organotin compounds in the environment, total tin (Sn) concentrations were determined for sediments of the Arakawa River, the Sumida River, and Tokyo Bay by using a graphite furnace atomic absorption spectrophotometer (GFAAS). Sn concentrations in 2000 were compared with those of 1984 (8 years before the regulation on tributyltin-based antifouling paint) as well as with other heavy metals (Cu, Ni, Pb, and Zn). The Sn concentrations ranged from 1.04 to 4.43 mg kg?1 for sediments sampled in 2000. Although the average concentration of Sn in the sediments was low compared with that of 1984, the concentration tended to increase at several sites in 2000. Moreover, the Sn concentration showed significant correlations with the Cu, Ni, Pb, and Zn concentrations. These results suggest that a significant proportion of the overall Sn content in these sediments was probably introduced from the sources other than antifouling paint. The metals extracted from air-dried sediments with 0.1 m HCl showed that the mobility and bioavailability of Sn was low compared with those of other heavy metals.  相似文献   
43.
Abstract

In our previous report (Yanai et al. 2004: Soil Sci. Plant Nutr., 50, 821–829), we demonstrated that soil freeze-thaw cycles caused a partial sterilization of the soil microbial communities and exerted limited effects on the potential of organic matter decomposition of soils. In the present study, the effects of soil freeze-thaw cycles on the nitrification potential of soils were examined and the impacts of the freeze-thaw cycles on the nitrifying communities were analyzed. Samples of surface soils (0 to 10 cm depth) were collected, from tropical arable land sites, temperate forest, and arable land sites~ Nitrification potential was assayed by the incubation of soils with or without the addition of 200 fig N of ammonium sulfate per g soil to reach a moisture content adjusted to 60% of maximum water-holding capacity at 27~wC following four successive soil freeze-thaw cycles (-13 and 4°C at 12 h-intervals). Nitrification potential of the soils, in which the decrease in the microbial biomass following the freeze-thaw cycles was less appreciable, was not inhibited by the soil freeze-thaw cycles. On the other hand, the nitrification potential of the soils, in which the decrease in the microbial biomass following the soil freeze-thaw cycles was relatively more appreciable, was clearly inhibited by the freeze-thaw cycles or was undetectable even in the unfrozen control. Surprisingly, nitrate production in the samples of an arable soil collected from Vietnam was inhibited by the addition of ammonium sulfate, and thus the effects of counter-anions of ammonium salts on the nitrification potential of the soils were examined. Since a much larger amount of nitrate was produced in the Vietnam soil with the addition of ammonium acetate and ammonium hydrogen carbonate than that in the soil with the addition of ammonium sulfate, it was considered that ammonium sulfate inhibited nitrification in the soil. These results indicated that ammonium sulfate may not always be a suitable substrate for estimating the nitrification potential of soils. Relationship between soil physicochemical properties and the effect of the soil freeze-thaw cycles on the nitrification potential was evaluated and it was considered that the soil pH(KCI) was likely to be responsible for the difference in the responses among soils, assuming that the pH values changed in unfrozen water under the frozen conditions of soils.  相似文献   
44.
Studies on the metabolic process of photoassimilates and enhancement of sugar accumulation into fruit are important in fruit crop production. The metabolic process of the 14C-photoassimilates in cucumber plants was analyzed with respect to the vascular system. At 4 h after the start of 14CO2 feeding, the 14C-photoassimilates synthesized in a selected leaf on the main shoot were translocated to the vascular bundles of the internode just below the 14CO2-fed leaf. The radioactivity of 14C-stachyose was as high as that of 14C-sucrose in the vascular bundles of petiole and internode just below the 14CO2-fed leaf as well as in the midrib, while the radioactivity of 14C-stachyose was lower than that of 14C-sucrose in the mesophyll. The 14C-photoassimilates appeared to have been translocated without any metabolic change in the translocation pathways between the petiole and internode just below the 14CO2-fed leaf, because the ratio of 14C-stachyose radioactivity in the two parts was similar. At 8 h after the start of 14CO2 feeding, the 14C-photoassimilates were translocated to the fruit. In the vascular bundles of the peduncle, the ratios of the radioactivity of 14C-stachyose and 14C-raffinose were lower, and the ratio of the radioactivity of 14C-sucrose was higher, than that at the petiole and internode just below the 14CO2-fed leaf at 8 h after the start of 14CO2 feeding. Therefore, it seemed that 14C-stachyose and 14C-raffinose were hydrolyzed to 14C-sucrose in the peduncle.  相似文献   
45.
46.
47.
This study was designed to assess the mental aspect of the work load in operators of high proficient forestry machines. Workers engaged in the operation of harvesters, processors, tower-yarders, forwarders and an excavator were included in this study. Mental fatigue and stress generated by operating these five types of forestry machine were assessed. The stress intensity as a measure of mental strain was high in all types of work surveyed. In some types of work demanding a complicated operation of machine, complaints of both mental and physical strain were frequent. In the type of work such as undertaken on a contract basis, operators worked with a feeling of mental pressure to complete the work by the deadline in the contract. The results suggest that the work load needs to be assessed from the physical and mental aspects combined. The titles are tentative translation from Japanese title by the auther of this paper.  相似文献   
48.
Ethyl acetate extracts ofCupressus lusitanica suspension cell cultures were examined for their biological activities (viz., tyrosinase inhibitory, antioxidant, and antimicrobial activities). The extract from elicitor-treated cells showed all of the biological activities, whereas the extract from cultures without elicitor was not bioactive to a discernible extent. The biological activities shown by the cell culture extracts were almost solely accounted for by-thuj aplicin contained in the extracts. These results suggest that the ethyl acetate extract ofC. lusitanica cells treated with the elicitor is a valuable bioactive source without isolation or purification of-thujaplicin.  相似文献   
49.
Abstract

Iron oxide is the most important electron acceptor in paddy fields. We aimed to suppress the methane emission from paddy fields over the long term by single application of iron materials. A revolving furnace slag (RFS; 245 g Fe kg-1) and a spent disposable portable body warmer (PBW; 550 g Fe kg-1) were used as iron materials. Samples of a soil with a low iron level (18.5 g Fe kg-1), hearafter referred to as “a low-iron soil” and of a soil with a high iron level (28.5 g Fe kg-1), hearafter referred to as “an iron-rich soil,” were put into 3 L pots. At the beginning of the experiment, RFS was applied to the pots at the rate of 20 and 40 t ha-1, while PBW was applied at the rate of 10 t ha-1 only, and in the control both were not applied. Methane and nitrous oxide emissions from the potted soils with rice plants were measured by the closed chamber method in 2001 and 2002. When RFS was applied at the rates of 20 and 40 t ha-1 to the low-iron soil, the total methane emission during the cultivation period significantly decreased by 25–50% without a loss of grain yield. Applied iron materials clearly acted as electron acceptors, based on the increase in the amount of ferrous iron in soil. However, the suppressive effect was not evident in the iron-rich soil treated with RFS or PBW. On the other hand, nitrous oxide emission increased by 30–95%. As a whole, when the total methane and nitrous oxide emissions in the low-iron soil were converted to total greenhouse gas emissions expressed as CO2- C equivalents in line with the global warming potential, the total greenhouse gas emissions decreased by about 50% due to the application of RFS.  相似文献   
50.
Saline soils hamper various physiological functions in soybean [Glycine max (L.) Merr.]. One example is the reduction in nitrogen (N) uptake capacity, a major dysfunction that limits soybean growth and yield under saline conditions. Previous studies have revealed that tolerance to salinity varies with cultivar; however, the cultivars used in these studies were selected solely based on agro-morphological traits. In this study, we examined genotypic variation in salinity tolerance among 85 soybean genotypes which were selected based on an assessment of both single nucleotide polymorphisms (SNP) markers and agro-morphological traits. Additionally, we examined whether salt tolerance is associated with nodulation and N uptake. We used a subset of the world soybean mini-core collection (80 cultivars) and an additional five cultivars/genetic lines (NILs72-T, NILs72-S, Enrei, En-b0-1, and En1282). All plants were grown in pots and treated with saline (final concentration of 150 mM NaCl) during the vegetative growth stage. To evaluate salinity tolerance, we used the ratio of saline-treated (S) to control (C) plant total dry weight [DW (S/C)]. The ratio differed markedly according to genotype. Furthermore, salinity-tolerant genotypes exhibited superior nodulation, leaf greenness, and N uptake under saline conditions. These results indicate that there is a marked genotypic variation in salinity tolerance, and that the tolerant genotypes exhibit greater nodulation and N uptake, although further studies are needed to clarify whether the superior nodulation and N uptake of salinity-tolerant genotypes are responsible for the observed tolerance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号