首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   24篇
综合类   4篇
水产渔业   3篇
畜牧兽医   87篇
植物保护   2篇
  2020年   6篇
  2019年   5篇
  2018年   2篇
  2017年   6篇
  2016年   7篇
  2015年   8篇
  2014年   6篇
  2013年   4篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   5篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   6篇
  1994年   4篇
  1993年   1篇
  1989年   3篇
  1988年   2篇
排序方式: 共有96条查询结果,搜索用时 15 毫秒
11.
12.
13.
14.
A biochemically based model was developed to simulate the growth, development and metamorphosis of larvae of the Pacific oyster, Crassostrea gigas. The model is unique in that it (1) defines larvae in terms of their protein, neutral lipid, polar lipid, carbohydrate and ash content; (2) tracks weight separately from length to follow larval condition index and (3) includes genetic variation in growth efficiency and egg quality to better simulate cohort population dynamics. The model includes parameterizations for larval filtration, ingestion and respiration that determine growth rate and processes controlling larval mortality and metamorphosis. Changes in tissue composition occur as the larva grows and in response to the biochemical composition of the food.

The simulations show that genetically determined variations in growth efficiency produce significant changes in larval survival and success at metamorphosis. Larvae with low growth efficiency are successful under a much narrower range of culture conditions than larvae with high growth efficiency. The impact of low growth efficiency is primarily controlled by the ability of larvae to store lipid for metamorphosis. Culture conditions that provide increased dietary lipid counterweigh low growth efficiency. Changes in food quantity and quality had little effect on size at metamorphosis. On the other hand, larval life span and success rate at metamorphosis varied over a wide range depending upon the conditions of the simulation. Food quality and food availability both influence larval life span and, hence, larval survival. As ingestion rate decreases, larval life span increases and cohort survival declines. Increased lipid or decreased protein in the diet improves cohort survival. Changes in carbohydrate content are less influential. If cohort success is significantly affected by mortality during larval life rather than success at metamorphosis, the influence of food quality becomes more complex. The range of food compositions yielding high survival is restricted by a balance between improved success at metamorphosis obtained by increased lipid storage and the shortening of larval life span as a result of more rapid growth, a function of protein availability. These simulations illustrate the strength and utility of numerical models for evaluating and designing hatchery protocols for optimizing yield of C. gigas larvae.  相似文献   

15.
16.
17.
18.
19.
20.
The aim of this study was to examine the effect of varying intracellular reactive oxygen species (ROS) levels during oocyte in vitro maturation with enzymatic ROS production systems (xanthine + xanthine oxidase or xanthine + xanthine oxidase + catalase), scavenger systems (catalase or superoxide dismutase + catalase) or cysteine on porcine oocyte maturation. Oocyte ROS levels showed an increase when H2O2 or O2? production systems were added to the culture medium (p < 0.05). On the other hand, the presence of ROS scavengers in the maturation medium did not modify oocyte ROS levels compared with the control after 48 h of maturation, but the addition of cysteine induced a decrease in oocyte ROS levels (p < 0.05). The ROS production systems used in this work did not modified the percentage of oocyte nuclear maturation, but increased the decondensation of sperm head (p < 0.05) and decreased the pronuclear formation (p < 0.05). In turn, the addition of O2? and H2O2 scavenging systems during in vitro maturation did not modify the percentage of oocytes reaching metaphase II nor the oocytes with decondensed sperm head or pronuclei after fertilization. However, both parameters increased in the presence of cysteine (p < 0.05). The exogenous generation of O2? and H2O2 during oocyte in vitro maturation would not affect nuclear maturation or later sperm penetration, but most of the spermatozoa cannot progress to form the pronuclei after fusion with the oocyte. The decrease in endogenous ROS levels by the addition of cysteine would improve pronuclear formation after sperm penetration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号