首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   503篇
  免费   48篇
林业   13篇
农学   9篇
基础科学   4篇
  57篇
综合类   34篇
农作物   13篇
水产渔业   44篇
畜牧兽医   354篇
园艺   8篇
植物保护   15篇
  2024年   3篇
  2023年   18篇
  2022年   12篇
  2021年   22篇
  2020年   14篇
  2019年   23篇
  2018年   21篇
  2017年   21篇
  2016年   12篇
  2015年   17篇
  2014年   27篇
  2013年   13篇
  2012年   31篇
  2011年   35篇
  2010年   18篇
  2009年   13篇
  2008年   24篇
  2007年   23篇
  2006年   20篇
  2005年   37篇
  2004年   33篇
  2003年   38篇
  2002年   42篇
  2001年   6篇
  2000年   2篇
  1998年   2篇
  1997年   5篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1972年   1篇
  1967年   1篇
  1940年   1篇
  1929年   1篇
  1888年   1篇
排序方式: 共有551条查询结果,搜索用时 15 毫秒
41.
The asymmetric alpha-addition of relatively nonpolar hydrocarbon substrates, such as allyl and aryl groups, to aldehydes and ketones remains a largely unsolved problem in organic synthesis, despite the wide potential utility of direct routes to such products. We reasoned that well-established chiral amine catalysis, which activates aldehydes toward electrophile addition by enamine formation, could be expanded to this important reaction class by applying a single-electron oxidant to create a transient radical species from the enamine. We demonstrated the concept of singly occupied molecular orbital (SOMO) activation with a highly selective alpha-allylation of aldehydes, and we here present preliminary results for enantioselective heteroarylations and cyclization/halogenation cascades.  相似文献   
42.
43.
This study coupled stable isotope probing with phospholipid fatty acid analysis (13C-PLFA) to describe the role of microbial community composition in the short-term processing (i.e., C incorporation into microbial biomass and/or deposition or respiration of C) of root- versus residue-C and, ultimately, in long-term C sequestration in conventional (annual synthetic fertilizer applications), low-input (synthetic fertilizer and cover crop applied in alternating years), and organic (annual composted manure and cover crop additions) maize-tomato (Zea mays - Lycopersicum esculentum) cropping systems. During the maize growing season, we traced 13C-labeled hairy vetch (Vicia dasycarpa) roots and residues into PLFAs extracted from soil microaggregates (53-250 μm) and silt-and-clay (<53 μm) particles. Total PLFA biomass was greatest in the organic (41.4 nmol g−1 soil) and similar between the conventional and low-input systems (31.0 and 30.1 nmol g−1 soil, respectively), with Gram-positive bacterial PLFA dominating the microbial communities in all systems. Although total PLFA-C derived from roots was over four times greater than from residues, relative distributions (mol%) of root- and residue-derived C into the microbial communities were not different among the three cropping systems. Additionally, neither the PLFA profiles nor the amount of root- and residue-C incorporation into the PLFAs of the microaggregates were consistently different when compared with the silt-and-clay particles. More fungal PLFA-C was measured, however, in microaggregates compared with silt-and-clay. The lack of differences between the mol% within the microbial communities of the cropping systems and between the PLFA-C in the microaggregates and the silt-and-clay may have been due to (i) insufficient differences in quality between roots and residues and/or (ii) the high N availability in these N-fertilized cropping systems that augmented the abilities of the microbial communities to process a wide range of substrate qualities. The main implications of this study are that (i) the greater short-term microbial processing of root- than residue-C can be a mechanistic explanation for the higher relative retention of root- over residue-C, but microbial community composition did not influence long-term C sequestration trends in the three cropping systems and (ii) in spite of the similarity between the microbial community profiles of the microaggregates and the silt-and-clay, more C was processed in the microaggregates by fungi, suggesting that the microaggregate is a relatively unique microenvironment for fungal activity.  相似文献   
44.
45.
Two complementary studies were performed to examine (1) the effect of 18 years of nitrogen (N) fertilization, and (2) the effects of N fertilization during one growing season on soil microbial community composition and soil resource availability in a grassland ecosystem. N was added at three different rates: 0, 5.44, and 27.2 g N m−2 y−1. In both studies, Schizachyrium scoparium was the dominant plant species before N treatments were applied. Soil microbial communities from each experiment were characterized using fatty acid methyl ester (FAME) analysis. Discriminant analysis of the FAMEs separated the three N fertilizer treatments in both experiments, indicating shifts in the composition of the microbial communities. In general, plots that received N fertilizer at low or high application rates for 18 years showed increased proportions of bacterial FAMEs and decreased fungal FAMEs. In particular, control plots contained a significantly higher proportion of fungal FAMEs C18:1(cis9) and C18:2(cis9,12) and of the arbuscular mycorrhizal fungal (AMF) FAME, C16:1(cis11), than both of the N addition treatment plots. A significant negative effect of N fertilization on the AMF FAME, C16:1(cis11), was measured in the short-term experiment. Our results indicate that high rates of anthropogenic N deposition can lead to significant changes in the composition of soil microbial communities over short periods and can even disrupt the relationship between AMF and plants.  相似文献   
46.
Microbial activity is known to continue during the winter months in cold alpine and Arctic soils often resulting in high microbial biomass. Complex soil nutrient dynamics characterize the transition when soil temperatures approach and exceed 0 °C in spring. At the time of this transition in alphine soils microbial biomass declines dramatically together with soil pools of available nutrients. This pattern of change characterizes alpine soils at the winter-spring transition but whether a similar pattern occurs in Arctic soils, which are colder, is unclear. In this study amounts of microbial biomass and the availability of carbon (C), nitrogen (N) and phosphorus (P) for microbial and plant growth in wet peaty soils of an Arctic sedge meadow have been determined across the winter-spring boundary. The objective was to determine the likely causes of the decline in microbial biomass in relation to temperature change and nutrient availability. The pattern of soil temperature at depths of 5-15 cm can be divided into three phases: below −10 °C in late winter, from −7 to 0 °C for 7 weeks during a period of freeze-thaw cycles and above 0 °C in early spring. Peak microbial biomass and nutrient availability occurred early in the freeze-thaw phase. Subsequently, a steady decrease in inorganic N occurred, so that when soil temperatures rose above 0 °C, pools of inorganic nutrients in soils were very low. In contrast, amounts of microbial C and soluble organic C and N remained high until the end of the period of freeze-thaw cycles, when a sudden collapse occurred in soluble organic C and N and in phosphatase activity, followed by a crash in microbial biomass just prior to soil temperatures rising consistently above 0 °C. Following this, there was no large pulse of available nutrients, implying that competition for nutrients from roots results in the collapse of the microbial pool.  相似文献   
47.
48.
The records of 3,952 equine patients presenting to the Veterinary Teaching Hospital at North Carolina State University College of Veterinary Medicine were evaluated to determine risk factors associated with thrombocytopenia. Of 2,346 horses from which a CBC was obtained, 35 (1.49%) were thrombocytopenic (platelet count < 75,000/μL). A reference population of 189 horses with normal platelet counts (75,000 to 300,000/μL) was also studied. Standardbred horses were at increased risk for thrombocytopenia. but age and gender were not identified as significant risk factors. Horses with infectious or inflammatory diseases were at increased risk for thrombocytopenia. The potential association of clinical and clinicopathologic factors with thrombocytopenia were assessed by reviewing a series of multiple logistic regression models. Clinical and clinicopathologic variables significantly associated with thrombocytopenia in the final model included increased PCV, increased band neutrophil count, increased total WBC, and decreased plasma protein concentration. Increased mature neutrophil count was associated with normal platelet counts. Thrombocytopenic horses were significantly more likely to die or be euthanized than were horses with normal platelet counts. J Vet Intern Med 1996;10:127–132. Copyright © 1996 by the American College of Veterinary Internal Medicine .  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号