首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   5篇
林业   9篇
农学   9篇
  55篇
综合类   1篇
农作物   11篇
水产渔业   3篇
畜牧兽医   27篇
植物保护   8篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   5篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   4篇
  2014年   7篇
  2013年   8篇
  2012年   6篇
  2011年   15篇
  2010年   6篇
  2009年   4篇
  2008年   12篇
  2007年   7篇
  2006年   6篇
  2005年   5篇
  2004年   3篇
  2003年   6篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1994年   3篇
  1991年   1篇
  1989年   1篇
  1977年   1篇
  1968年   1篇
排序方式: 共有123条查询结果,搜索用时 31 毫秒
1.
Based on recent findings in the literature, we developed a process‐oriented conceptual model that integrates all three process groups of organic matter (OM) stabilization in soils namely (1) selective preservation of recalcitrant compounds, (2) spatial inaccessibility to decomposer organisms, and (3) interactions of OM with minerals and metal ions. The model concept relates the diverse stabilization mechanisms to active, intermediate, and passive pools. The formation of the passive pool is regarded as hierarchical structured co‐action of various processes that are active under specific pedogenetic conditions. To evaluate the model, we used data of pool sizes and turnover times of soil OM fractions from horizons of two acid forest and two agricultural soils. Selective preservation of recalcitrant compounds is relevant in the active pool and particularly in soil horizons with high C contents. Biogenic aggregation preserves OM in the intermediate pool and is limited to topsoil horizons. Spatial inaccessibility due to the occlusion of OM in clay microstructures and due to the formation of hydrophobic surfaces stabilizes OM in the passive pool. If present, charcoal contributes to the passive pool mainly in topsoil horizons. The importance of organo‐mineral interactions for OM stabilization in the passive pool is well‐known and increases with soil depth. Hydrophobicity is particularly relevant in acid soils and in soils with considerable inputs of charcoal. We conclude that the stabilization potentials of soils are site‐ and horizon‐specific. Furthermore, management affects key stabilization mechanisms. Tillage increases the importance of organo‐mineral interactions for OM stabilization, and in Ap horizons with high microbial activity and C turnover, organo‐mineral interactions can contribute to OM stabilization in the intermediate pool. The application of our model showed that we need a better understanding of processes causing spatial inaccessibility of OM to decomposers in the passive pool.  相似文献   
2.
Aluminium (Al) is abundant in soils, but the influence of Al on the mineralization of dissolved organic carbon and thus on carbon sequestration in soil is only poorly understood. We investigated the extent and rate of mineralization of dissolved organic carbon at various Al/C ratios. Dissolved organic carbon extracted from Oi and Oa layers under coniferous and deciduous forest was incubated with initial molar Al/C ratios from < 0.004 to 0.44 for 130 days. Mineralization was quantified by measurement of CO2. Rapidly and slowly mineralizable pools of dissolved organic C and their decomposition rate constants and half‐lives (as a measure of labile and stable C) were modelled with a double exponential equation. Increasing initial Al/C ratios up to 0.1 led to a considerable decrease in mineralization (up to 50% compared with control samples). The half‐life of the stable C pool increased up to 4‐fold, whereas the half‐life of the labile C pool was unaffected. Ratios of Al/C > 0.1 did not further decrease the mineralization, but led to increasing concentrations of free Al3+ in solution, and to increasing Al/C ratios in the precipitate, indicating that the Al complexation capacity of dissolved organic C was exceeded. Decrease in mineralization as well as formation of particulate organic matter (up to 56% of initial dissolved organic C) affected mainly the stable pool. Mineralization of dissolved organic C can be predicted from UV absorption by use of exponential regressions, but adding an Al variable did not improve the prediction significantly. We conclude that Al influences substantially the biodegradability of dissolved organic C percolating into the mineral soil, which may have consequences for the carbon sequestration in the soil. Declining Al concentrations would increase the mineralization of dissolved organic C only if the Al/C ratio becomes less than the ‘threshold value’ in the range of the Al complexation capacity of the dissolved organic C.  相似文献   
3.
4.
5.
The carbon (δ(13)C) and oxygen (δ(18)O) stable isotope composition is widely used to obtain information on the linkages between environmental drivers and tree physiology over various time scales. The tree-ring archive can especially be exploited to reconstruct inter- and intra-annual variation of both climate and physiology. There is, however, a lack of information on the processes potentially affecting δ(13)C and δ(18)O on their way from assimilation in the leaf to the tree ring. As a consequence, the aim of this study was to trace the isotope signals in European beech (Fagus sylvatica L.) from leaf water (δ(18)O) and leaf assimilates (δ(13)C and δ(18)O) to tree-ring wood via phloem-transported compounds over a whole growing season. Phloem and leaf samples for δ(13)C and δ(18)O analyses as well as soil water, xylem water, leaf water and atmospheric water vapour samples for δ(18)O analysis were taken approximately every 2 weeks during the growing season of 2007. The δ(13)C and δ(18)O samples from the tree rings were dated intra-annually by monitoring the tree growth with dendrometers. δ(18)O in the phloem organic matter and tree-ring whole wood was not positively related to leaf water evaporative enrichment and δ(18)O of canopy organic matter pools. This finding implies a partial uncoupling of the tree-ring oxygen isotopic signal from canopy physiology. At the same time, internal carbon storage and remobilization physiology most likely prevented δ(13)C in tree-ring whole wood from being closely related to intra-annual variation in environmental drivers. Taking into account the post-photosynthetic isotope fractionation processes resulting in alterations of δ(13)C and δ(18)O not only in the tree ring but also in phloem carbohydrates, as well as the intra-annual timing of changes in the tree internal physiology, might help to better understand the meaning of the tree-ring isotope signal not only intra- but also inter-annually.  相似文献   
6.
Berry shrivel and bunch stem necrosis are the economically most important physiological disorders of grapevine. The nutritional status of the plant is considered as one of the main elicitors for the occurrence of these disorders. For foliar fertilization trials, two vineyards that had previously been affected by both diseases were selected in Southwest Germany, one with the variety ‘Zweigelt’ and one with Pinot Blanc. By the use of potassium, magnesium, and calcium foliar fertilizers, a rapid increase of different nutrients in the plants should be caused and the effects on the diseases observed. In 2010, no significant differences in the fertilization treatments were found for both varieties. In ‘Pinot Blanc’, significantly more berries were affected by berry shrivel in 2011 in plots treated with calcium fertilizer compared to those treated with potassium and magnesium. Plots with magnesium fertilizer showed significantly less berries affected by berry shrivel than the untreated control.  相似文献   
7.
Lignin is considered to be a crucial component controlling litter decomposition but its role in the production of dissolved organic matter (DOM) from litter is not well understood. Our main objective therefore was to examine the amounts and properties of DOM produced in decomposing litter, with special emphasis on the role of lignin degradation. We exposed litter of five different tree species (Sycamore maple, Mountain ash, European beech, Norway spruce, Scots pine) in litterbags at the soil surface of two neighbouring sites to degradation under field conditions. Litterbags were sampled eight times during 27 months of exposure in the field. We determined mass loss and characterized the lignin fraction by two different methods (van Soest procedure, acid‐detergent lignin: ADL, CuO oxidation). Litter was irrigated in the laboratory and leachates were analysed for dissolved organic carbon (DOC) and characterized by UV and fluorescence spectroscopy. Litter decomposition followed a two‐stage model characterized by initially rapid and then decreasing degradation with time. In the initial phase of litter decomposition, leached amounts of DOM decreased with time and no effects of lignin degradation were found. The contents of ADL in the litter residues and CuO oxidation products suggest larger degradation and oxidation of lignin in beech, spruce and pine litter than in maple and ash litter. The production of DOM from litter with larger lignin degradation increased in the second phase of decomposition, when mass loss exceeded 10–20%. In contrast, DOM produced from litter showing weak lignin degradation (maple, ash) did not increase further in the second phase of decomposition. In the leachates of litter with large lignin degradation (beech, spruce, pine), UV absorbance and fluorescence spectroscopy indicated a larger increase in the contribution of lignin‐derived compounds to DOM with increasing mass loss than for litter species with relatively stable lignin. We conclude that degradation of lignin is an important control on DOM production during the second phase of litter decomposition.  相似文献   
8.
Litter is one of the main sources of dissolved organic carbon (DOC) in forest soils and litter decomposition is an important control of carbon storage and DOC dynamics. The aim of our study was to evaluate (i) effects of tree species on DOC production and (ii) relationships between litter decomposition and the amount and quality of DOC. Five different types of leaves and needles were exposed in litterbags at two neighboring forest sites. Within 12 months we sampled the litterbags five times and leached aliquots of field moist litter in the laboratory. In the collected litter percolates we measured DOC concentrations and recorded UV and fluorescence spectra in order to estimate the aromaticity and complexity of the organic molecules. Furthermore, we investigated the biodegradability of DOC from fresh and decomposed litter during 6 weeks incubations. Fresh sycamore maple litter released the largest amounts of DOC reaching about 6.2% of litter C after applying precipitation of 94 mm. We leached 3.9, 1.6, 1.0 and 3.3% carbon from fresh mountain ash, beech, spruce and pine litter, respectively. In the initial phase of litter decomposition significantly decreasing DOC amounts were released with increasing litter mass loss. However, after mass loss exceeds 20% DOC production from needle litter tended to increase. UV and fluorescence spectra of percolates from pine and spruce litter indicated an increasing degree of aromaticity and complexity with increasing mass loss as often described for decomposing litter. However, for deciduous litter the relationship was less obvious. We assume that during litter decomposition the source of produced DOC in coniferous litter tended toward a larger contribution from lignin-derived compounds. Biodegradability of DOC from fresh litter was very high, ranging from 30 to 95% mineralized C. DOC from degraded litter was on average 34% less mineralizable than DOC from fresh litter. Taking into account the large DOC production from decomposed needles we can assume there is an important role for DOC in the accumulation of organic matter in soils during litter decomposition particularly in coniferous forests.  相似文献   
9.
European ash (Fraxinus excelsior) trees currently face the major threat of ash dieback caused by an invasive fungus, Hymenoscyphus fraxineus. Collar rots in F. excelsior have been increasingly associated with infections by this pathogen. However, the aetiology of the collar rots is still unclear and remains heavily debated. In contrast to most studies of this kind, entire rootstocks of four diseased ash trees were dug out to examine necrotic tissues in these rootstocks and stem bases in detail and to sample necrotic wood for fungal isolation. With the aid of morphological and molecular identification techniques, five to twelve fungal taxa were detected per tree. Members of the Nectriaceae family and Botryosphaeria stevensii, the causal agent of stem and branch cankers on many tree species, were frequently isolated from outer xylem. In contrast, H. fraxineus was the dominating species in interior wood layers. Microsatellite genotyping of 77 H. fraxineus isolates helped to identify up to six different genotypes per tree. The role of H. fraxineus and other isolated fungi in the aetiology of ash collar rots are discussed.  相似文献   
10.
A culture of Penicillium vulpinum CM1 isolated from a soil sample cultivated with maize was examined for the production of the mycotoxins cyclopiazonic acid, griseofulvin, patulin (PAT), and roquefortine C. The fungal strain was positive for PAT- and roquefortine C–producing ability, while it showed negative producing ability for cyclopiazonic acid, and griseofulvin. Both PAT and roquefortine C toxins were tested for their inhibitory effect on the germination of maize seeds. Roquefortine C showed no phytotoxicity up to a concentration of 100 μg ml?1. However, a notable reduction in the average values of fresh weight and length of roots and shoots was observed following application of PAT and a culture filtrate of P. vulpinum to maize seedlings. The phytotoxic effect was found to be dose-dependent. To analyse the cellular effects of PAT, maize root tips were treated with PAT at different concentrations. The higher dose of 25 μg ml?1 exhibited morphological changes in the nature of cytoplasm and cytoplasmic organelles as was shown by transmission electron microscopy. Furthermore, an increase in the vacuolation with localized tonoplast dissolution was observed. At this concentration, there was evidence of a disruption of lipid metabolism. On the metabolic level, the phytotoxicity of PAT and the culture filtrate of P. vulpinum led to alterations in the total reduced glutathione (GSH) concentration in maize seedlings. The GSH concentrations examined in roots and shoots after PAT, fungal filtrate or fungal crude extract treatments were enhanced compared with control treatments. Findings further showed higher total GSH levels in shoots than in roots following treatments either with PAT or the fungal crude extract. The results are discussed in the context of known herbicide and metal effects on GSH synthesis and transport mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号