首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148篇
  免费   4篇
  国内免费   6篇
林业   43篇
农学   13篇
基础科学   2篇
  29篇
综合类   21篇
农作物   9篇
水产渔业   6篇
畜牧兽医   18篇
园艺   2篇
植物保护   15篇
  2023年   4篇
  2022年   3篇
  2021年   6篇
  2020年   4篇
  2019年   4篇
  2018年   13篇
  2017年   6篇
  2016年   4篇
  2015年   10篇
  2014年   10篇
  2013年   17篇
  2012年   6篇
  2011年   13篇
  2010年   5篇
  2009年   5篇
  2008年   5篇
  2007年   5篇
  2006年   10篇
  2005年   6篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  2001年   3篇
  1999年   2篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
  1988年   2篇
  1976年   1篇
排序方式: 共有158条查询结果,搜索用时 31 毫秒
51.
高产、优质绿色棉新品种——新彩棉27号的选育   总被引:2,自引:2,他引:0  
新彩棉27号(原品系名为金垦绿2号)由新疆农垦科学院棉花研究所、新疆农垦科学院新垦棉业科技开发部及新疆西域绿洲种业科技有限公司联合协作,以石彩5号为母本,以自育丰产优质抗病品系D150为父本进行杂交,通过多年的病地定向选择、抗性鉴定、南繁加代、品质检测、品比试验、多点试验选择培育而成的绿色棉。2013年8月通过新疆维吾尔自治区农作物品种审定委员会审定并命名为新彩棉27号,审定编号:新审棉2013年57号。  相似文献   
52.
Trematodes of the genus Dicrocoelium are one of the most common parasites in ruminant animals; however, their life cycles in Japan are unclear. To find the sporocysts of D. chinensis in the natural field, we sampled 269 land snails (14 species) at a location with high level infection of sika deer in Gifu Prefecture, Honshu Island, Japan in autumn between 2017 and 2019. During the sampling period, we found mother sporocysts in the hepatopancreas of Aegista vulgivaga and Cyclophorus herklotsi. DNA barcoding based on the sequences of cytochrome c oxidase subunit 1 showed that the sporocysts from A. vulgivaga belonged to D. chinensis, indicating that this snail has potential as the first intermediate host of D. chinensis at this location.  相似文献   
53.
Extract

As previously reported (Taylor and Foy 1985; Keltjens and Ulden 1987; Grauer and Horst 1990; Galvez and Clark 1991), plant species and varieties widely differ in Al tolerance. Although many hypotheses about the physiological mechanism(s) involved in Al tolerance have been formulated, the mechanism(s) has not been elucidated. However, it is obvious that when exposed to Al at high concentrations, Al-tolerant plants seem to be able to avoid the toxicity by refraining from excess uptake of Al or by chelating of Al in the rhizosphere or in the roots. In such ways, Al can not affect the growth of tolerant plants (Foy et al. 1978).  相似文献   
54.
Five barley cultivars were grown together in complete, low-P·low-pH and high-Al medium containing only NO3, only NH4 or both NO3 and NH4 as N sources, respectively using an automatic control system of pH for water culture, and the relationship between the differential Al tolerance and the plant-induced pH change of medium among the barley cultivars was investigated.

The pH of the medium containing only NO3 as N source tended to increase, whereas the pH of the other media containing only NH4 or both NO3 and NH4 as N sources tended to decrease, but the fluctuations of the medium pH could be maintained within the value of 0.2 pH in the complete medium and within the value of 0.1 pH in the high-Al medium.

Barley cultivars still differed in their Al tolerance in the medium which was continuously stirred and circulated at a constant pH. The pattern of Al tolerance was not affected by the N sources in the medium. The plant-induced pH change of medium for each cultivar was influenced by the N sources in the medium, and was not correlated positively with Al tolerance. The contents of Al and Ca or other nutrient cations in roots were positively correlated with Al tolerance and positive correlations were recognized also between the contents of Al and Ca or some other nutrient cations in the roots.

In conclusion, the following mechanisms are proposed. Al tolerant barley cultivars exclude Al actively outside the plasmalemma of the root cells, and the excluded Al may polymerize and or react with P to form Al precipitates. Consequently, in the Al tolerant barley cultivars the Al content may be low in the root protoplasts, high in the whole root tissues and the contents of Ca or other nutrients may be high in the roots. The plant-induced pH change of medium is not considered to be the cause of the differential Al tolerance among barley cultivars.  相似文献   
55.
Soybean (Glycine max L. Merr.) cvs. Akisengoku and Peking, and cowpea (Vigna unguiculata Walp.) cv. Kegonnotaki were inoculated with Bradyrhizobium japonicum AlO17, Shinorhizobium fredii USDAI93, and B. sp. Vigna MAFF03-03063, respectively and were cultured hydroponically with supply of CO2-free air, 3dm3 m-3 CO2 air, or 25 dm3 m-3 CO2 air to study the effects of the CO2 concentration in the rhizosphere on plant growth, nodulation, and nitrogen fixation. Increase of the CO2 concentration in the rhizosphere led to the increase of the plant dry weight in the symbiosis between Peking and USDAI93, and that between Kegonnotaki and MAFF03-03063. On the other hand, dry matter accumulation in the symbiosis between Akisengoku and AI017 decreased under the supply of 25 dm3 m-3 CO2 air aimed at increasing the CO2 concentration in the rhizosphere beyond the optimum CO2 concentration for growth. Nodule mass and nodule number per plant were highest in Akisengoku, followed by Kegonnotaki and lowest in Peking. Also the increase of the CO2 concentration in the rhizosphere led to the increase of the nodule mass and number in Kegonnotaki, while no changes were observed in Akisengoku and Peking. Biological nitrogen fixation (BNF) was highest in Akisengoku, followed by Kegonnotaki, and lowest or near zero in Peking. BNF in Akisengoku and Kegonnotaki showed a similar tendency to that of dry matter accumulation. BNF of Peking was especially low under the supply of CO2-free air, and it increased with the increase of the CO2 concentration in the rhizosphere. For the symbiosis of Bradyrhizobium strains with soybean and cowpea, the most suitable CO2 concentration for N2 fixation and plant growth was estimated to be about 10 dm3 m-3, while for the symbiosis of S. fredii with soybean, the value was estimated to be above 30 dm3 m-3.  相似文献   
56.
Abstract

Caldwell and Vest (1968) planted soybeans (Glycine max L. Merr.) with various genotypes at Beltsville, USA, without inoculating them with Bradyrhizobium japonicum, and showed that soybeans preferred certain serotypes of rhizobial strains for nodulation. Recently, the authors have reported that soybeans carrying nodulation-conditioning genes preferred appropriate strains showing specific behavior for nodulation (Ishizuka et al. 1991). For instance, nodulation of soybean cv. Hardee which carries the nodulation-conditioning genes, Rj 2 and Rj 3, does not occur with B. japonicum USDA122, USDA33, Is-1, etc. Nodulation of cv. Hill which carries the Rj 4 gene, does not occur with B. japonicum USDA61, Is-21, etc. while A62-2 which carries a recessive gene rj 1, does not nodulate with almost any of the strains of B. japonicum. Therefore, the B. japonicum strains can be classified into three nodulation types based on the compatibility with these Rj-cultivars, that is, type A strains which effectively nodulated both Rj 2 Rj 3-cultivars and Rj 4-ones, type B strains which did not nodulate the Rj 2 Rj 3-cultivars and type C strains which did not nodulate the Rj 4-cultivars. When the nodulation types of the isolates from nodules of field-grown soybeans were examined, it was suggested that the Rj 2 Rj 3-cultivars and Rj 4-cultivars preferred the type C and type B strains, respectively (Ishizuka et al. 1991).  相似文献   
57.
北疆棉花合理密植技术及其机制   总被引:2,自引:0,他引:2  
以影响棉花产量的主要因子种植密度为主要处理,分析测定棉花各生育期的根系干物质积累、茎秆和叶片的干物质变化、叶面积指数和叶片光合速率变化以及棉花生育进程和产量构成,研究棉花合理密植技术及其机理。结果表明,中等肥力棉田膜下滴灌栽培时的最佳收获密度为1.20万/667 m2,播种密度1.40万/667 m2,实现匀株密植,说明北疆中等肥力棉田中密度栽培时具有较高产量水平。  相似文献   
58.
59.
以海岛棉7124抗黄萎病染色体片段导入系CSIL-035、CSIL-096、CSIL-108和CSIL-155为父本,新陆早33号、新陆早40号、新陆早42号、新陆早45号为母本,采用不完全双列杂交法配制16个组合,进行海岛棉染色体片段导入系黄萎病抗性配合力研究。研究结果表明,导入系CSIL-035、CSIL-096、CSIL-108和CSIL-155的发病率、病情指数、相对病指均具有较高的负向一般配合力(General combining ability,GCA)效应,均达到了显著水平。新陆早33号分别与导入系CSIL-035、CSIL-096、CSIL-108和CSIL-155配置的组合,其发病率、病情指数、相对病指特殊配合力(Specialcombiningability,SCA)效应为负值,均达到了显著或极显著水平。组合新陆早40号×CSIL-035和新陆早42号×CSIL-155的病情指数、相对病指SCA效应为负值,对黄萎病的抗性具有正向的促进作用。  相似文献   
60.
Diploid and triploid intergeneric hybrids obtained by crosses among Gloriosa superba ‘Lutea’ (2n = 2x = 22), G. ‘Marron Gold’ (2n = 4x = 44), Littonia modesta (2n = 2x = 22), and Sandersonia aurantiaca (2n = 2x = 24) were analyzed for their meiotic chromosome pairing in pollen mother cells by genomic in situ hybridization (GISH) with digoxigenin-labeled total DNA of one parent as probe. Chromosomes from each parent could be clearly distinguished in pollen mother cells of all the five intergeneric hybrids by GISH. For three diploid hybrids, L. modesta × G. superba ‘Lutea’ (2n = 2x = 22), L. modesta × S. aurantiaca (2n = 2x = 23) and S. aurantiaca × G. superba ‘Lutea’ (2n = 2x = 23), 0.04?0.27 autosyndetic bivalents (intragenomic pairing of non-homologous chromosomes) and 0.13?0.36 allosyndetic bivalents (intergenomic chromosome pairing) were observed per pollen mother cell, indicating that there are some homologous chromosomal regions within each genome and among the genomes of Gloriosa, Littonia and Sandersonia. Differences in the average number of allosyndetic bivalents per pollen mother cell among different genome combinations may reflect the evolutionary distances among the three genera, and Gloriosa and Littonia may be closely related to each other, while Sandersonia may have relatively distant relationships with Gloriosa and Littonia. For two triploid hybrids, L. modesta × G. ‘Marron Gold’ (2n = 3x = 33) and S. aurantiaca × G. ‘Marron Gold’ (2n = 3x = 34), no allosyndetic bivalents were observed. Based on the results obtained in the present study, possible utilization of the diploid and triploid intergeneric hybrids for further breeding of colchicaceous ornamentals is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号