首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7688篇
  免费   3490篇
  国内免费   7篇
林业   322篇
农学   469篇
基础科学   16篇
  1605篇
综合类   226篇
农作物   158篇
水产渔业   2549篇
畜牧兽医   4404篇
园艺   60篇
植物保护   1376篇
  2023年   18篇
  2022年   31篇
  2021年   161篇
  2020年   494篇
  2019年   1037篇
  2018年   913篇
  2017年   969篇
  2016年   949篇
  2015年   846篇
  2014年   840篇
  2013年   1025篇
  2012年   547篇
  2011年   577篇
  2010年   658篇
  2009年   301篇
  2008年   317篇
  2007年   146篇
  2006年   175篇
  2005年   161篇
  2004年   171篇
  2003年   163篇
  2002年   189篇
  2001年   82篇
  2000年   111篇
  1999年   21篇
  1998年   8篇
  1997年   26篇
  1996年   18篇
  1995年   15篇
  1994年   13篇
  1993年   10篇
  1992年   6篇
  1991年   14篇
  1990年   15篇
  1989年   12篇
  1987年   7篇
  1986年   12篇
  1985年   9篇
  1984年   7篇
  1983年   9篇
  1982年   8篇
  1981年   6篇
  1980年   7篇
  1979年   4篇
  1978年   12篇
  1977年   11篇
  1976年   6篇
  1974年   6篇
  1970年   5篇
  1958年   4篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
141.
142.
143.
Aphidoletes aphidimyza is one of the most important predators used in the augmentative biological control of aphids, key pests of many crops worldwide. Adult females are very efficient in locating aphid infestations over a relatively long range, up to 45 m, and deposit eggs near or within aphid colonies. The predatory larvae are aphid generalists preying on several agriculturally important aphid species. The successful use of this biocontrol agent in agricultural systems depends on several biotic and abiotic factors. Among biotic factors, aphid species, plant structure, interspecific competition and intraguild predation may significantly impact the predator´s population dynamics. Key abiotic conditions include day lengths (above a critical threshold to prevent diapause), availability of mating sites in the crop, temperature (above 15 °C to enable egg laying), air relative humidity (above 70%) and availability of pupation sites. Although several successes have been reported in open field crops with naturally occurring or released populations, commercial releases are primarily used in protected crops. Optimized emergence boxes combining provisioning of food sources for the adults, integration with the technological advances that occurred in the greenhouse environment lately, insights into the nutritional ecology in open field crops and exploration of the genetic variability are proposed as future directions to improve adoption and efficacy of A. aphidimyza in crop protection. © 2018 Society of Chemical Industry  相似文献   
144.
Systemicity of agrochemicals is an advantageous property for controlling phloem sucking insects, as well as pathogens and pests not accessible to contact products. After the penetration of the cuticle, the plasma membrane constitutes the main barrier to the entry of an agrochemical into the sap flow. The current strategy for developing systemic agrochemicals is to optimize the physicochemical properties of the molecules so that they can cross the plasma membrane by simple diffusion or ion trapping mechanisms. The main problem with current systemic compounds is that they move everywhere within the plant, and this non‐controlled mobility results in the contamination of the plant parts consumed by vertebrates and pollinators. To achieve the site‐targeted distribution of agrochemicals, a carrier‐mediated propesticide strategy is proposed in this review. After conjugating a non‐systemic agrochemical with a nutrient (α‐amino acids or sugars), the resulting conjugate may be actively transported across the plasma membrane by nutrient‐specific carriers. By applying this strategy, non‐systemic active ingredients are expected to be delivered into the target organs of young plants, thus avoiding or minimizing subsequent undesirable redistribution. The development of this innovative strategy presents many challenges, but opens up a wide range of exciting possibilities. © 2018 Society of Chemical Industry  相似文献   
145.
Since the discovery of penicillin in 1928 and throughout the ‘age of antibiotics’ from the 1940s until the 1980s, the detection of novel antibiotics was restricted by lack of knowledge about the distribution and ecology of antibiotic producers in nature. The discovery that a phenazine compound produced by Pseudomonas bacteria could suppress soilborne plant pathogens, and its recovery from rhizosphere soil in 1990, provided the first incontrovertible evidence that natural metabolites could control plant pathogens in the environment and opened a new era in biological control by root‐associated rhizobacteria. More recently, the advent of genomics, the availability of highly sensitive bioanalytical instrumentation, and the discovery of protective endophytes have accelerated progress toward overcoming many of the impediments that until now have limited the exploitation of beneficial plant‐associated microbes to enhance agricultural sustainability. Here, we present key developments that have established the importance of these microbes in the control of pathogens, discuss concepts resulting from the exploration of classical model systems, and highlight advances emerging from ongoing investigations. © 2019 Society of Chemical Industry  相似文献   
146.
147.
Summary Pedunculate oak seedlings (Quercus robur) inoculated with the ectomycorrhizal fungus Laccaria lacata were grown for 1 year on fertilized sphagnum peat in two nurseries. Three factors affecting microbial populations in the substrate were studied, fungicide treatment of the seeds, peat disinfection before sowing (methyl bromide or steam pasteurization), and inoculation with mycorrhization helper bacteria. Treatment of acorns with Iprodione had no depressive effect on mycorrhiza formation. Both disinfection techniques were equivalent, stimulating or depressing mycorrhiza formation depending on the initial microflora in the peat. The introduction of two previously selected mycorrhization helper bacteria (one Pseudomonas fluorescens and one unidentified fluorescent pseudomonad), isolated from L. laccata sporocarps associated with Douglas fir—L. laccata ectomycorrhizas in other nurseries, significantly increased the mycorrhizal rate from 30 to 53% of the short roots. The implications of these results for the controlled mycorrhization of planting stocks and the specificity of mycorrhization helper bacteria are discussed.  相似文献   
148.
The agroecosystem models THESEUS and OPUS were tested with data obtained from three agricultural experimental field plots on sandy soils without groundwater located at the moraine landscape in East Brandenburg, Germany. At each of these plots, a separate agricultural management practice was applied. Measurements of soil water contents, pressure heads, above‐ground crop biomass, and crop yield from these three plots were compared with the corresponding simulation results of both models. The comparisons of simulated with measured outputs were analyzed using the modeling‐efficiency index IA. According to these analyses, both models simulated adequately the time courses of volumetric soil water contents and above‐ground crop biomass, but the time courses of pressure heads were predicted with a lower quality by both models. As for the pressure heads, the yields simulated with both models showed greater discrepancies in comparison with the observed ones. This indicates the need of a site‐specific parameter calibration of the crop‐growth modules, especially for that included in OPUS .  相似文献   
149.
A 90‐day laboratory incubation study was carried out using six contrasting subtropical soils (calcareous, peat, saline, noncalcareous, terrace, and acid sulfate) from Bangladesh. A control treatment without nitrogen (N) application was compared with treatments where urea, ammonium sulfate (AS), and ammonium nitrate (AN) were applied at a rate of 100 mg N (kg soil)–1. To study the effect of N fertilizers on soil carbon (C) turnover, the CO2‐C flux was determined at nine sampling dates during the incubation, and the total loss of soil carbon (TC) was calculated. Nitrogen turnover was characterized by measuring net nitrogen mineralization (NNM) and net nitrification (NN). Simple and stepwise multiple regressions were calculated between CO2‐C flux, TC, NNM, and NN on the one hand and selected soil properties (organic C, total N, C : N ratio, CEC, pH, clay and sand content) on the other hand. In general, CO2‐C fluxes were clearly higher during the first 2 weeks of the incubation compared to the later phases. Soils with high pH and/or indigenous C displayed the highest CO2‐C flux. However, soils having low C levels (i.e., calcareous and terrace soils) displayed a large relative TC loss (up to 22.3%) and the added N–induced TC loss from these soils reached a maximum of 10.6%. Loss of TC differed depending on the N treatments (urea > AS > AN >> control). Significantly higher NNM was found in the acidic soils (terrace and acid sulfate). On average, NNM after urea application was higher than for AS and AN (80.3 vs. 71.9 and 70.9 N (kg soil)–1, respectively). However, specific interactions between N‐fertilizer form and soil type have to be taken into consideration. High pH soils displayed larger NN (75.9–98.1 mg N (kg soil)–1) than low pH soils. Averaged over the six soils, NN after application of urea and AS (83.3 and 82.2 mg N (kg soil)–1, respectively) was significantly higher than after application of AN (60.6 mg N (kg soil)–1). Significant relationships were found between total CO2 flux and certain soil properties (organic C, total N, CEC, clay and sand content). The most important soil property for NNM as well as NN was soil pH, showing a correlation coefficient of –0.33** and 0.45***, respectively. The results indicate that application of urea to acidic soils and AS to high‐pH soils could be an effective measure to improve the availability of added N for crop uptake.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号