首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   3篇
  1篇
综合类   1篇
畜牧兽医   42篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2005年   2篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1976年   1篇
排序方式: 共有44条查询结果,搜索用时 15 毫秒
11.
Porcine reproductive and respiratory syndrome (PRRS) causes decreased reproductive performance in breeding animals and increased respiratory problems in growing animals, which result in significant economic losses in the swine industry. Vaccination has generally not been effective in the prevention of PRRS, partially because of the rapid mutation rate and evolution of the virus. The objective of the current study was to discover the genetic basis of host resistance or susceptibility to the PRRS virus through a genome-wide association study using data from the PRRS Host Genetics Consortium PRRS-CAP project. Three groups of approximately 190 commercial crossbred pigs from 1 breeding company were infected with PRRS virus between 18 and 28 d of age. Blood samples and BW were collected up to 42 d post infection (DPI). Pigs were genotyped with the Illumina Porcine 60k Beadchip. Whole-genome analysis focused on viremia at each day blood was collected and BW gains from 0 to 21 DPI (WG21) or 42 DPI (WG42). Viral load (VL) was quantified as area under the curve from 0 to 21 DPI. Heritabilities for WG42 and VL were moderate at 0.30 and litter accounted for an additional 14% of phenotypic variation. Genomic regions associated with VL were found on chromosomes 4 and X and on 1, 4, 7, and 17 for WG42. The 1-Mb region identified on chromosome 4 influenced both WG and VL, exhibited strong linkage disequilibrium, and explained 15.7% of the genetic variance for VL and 11.2% for WG42. Despite a genetic correlation of -0.46 between VL and WG42, genomic EBV for this region were favorably and nearly perfectly correlated. The favorable allele for the most significant SNP in this region had a frequency of 0.16 and estimated allele substitution effects were significant (P < 0.01) for each group when the SNP was fitted as a fixed covariate in a model that included random polygenic effects with overall estimates of -4.1 units for VL (phenotypic SD = 6.9) and 2.0 kg (phenotypic SD = 3 kg) for WG42. Candidate genes in this region on SSC4 include the interferon induced guanylate-binding protein gene family. In conclusion, host response to experimental PRRS virus challenge has a strong genetic component, and a QTL on chromosome 4 explains a substantial proportion of the genetic variance in the studied population. These results could have a major impact in the swine industry by enabling marker-assisted selection to reduce the impact of PRRS but need to be validated in additional populations.  相似文献   
12.
The purpose of this study was to develop and implement least squares interval-mapping models for joint analysis of breed cross QTL mapping populations and to evaluate the effect of joint analysis on QTL detected for economic traits in data from two breed crosses in pigs. Data on 26 growth, carcass composition, and meat quality traits from F2 crosses between commercially relevant pig breeds were used: a Berkshire x Yorkshire cross at Iowa State University (ISU) and a Berkshire x Duroc cross at the University of Illinois (UOI). All animals were genotyped for a total of 39 (ISU) and 32 (UOI) markers on chromosomes 2, 6, 13, and 18. Marker linkage maps derived from the individual and joint data were similar with regard to order and relative position, but some differences in absolute distances existed. Maps from the joint data were used in all analyses. The individual and joint data sets were analyzed using several least squares interval-mapping models: line-cross (LC) models with Mendelian and parent-of-origin effects; halfsib models (HS); and combined models (CB) that included LC and HS effects. Lack-of-fit tests between the models were used to characterize QTL for mode of expression and to identify segregation of QTL within parental breeds. A total of 26 (8), 47 (18), and 53 (16) QTL were detected at the 5% chromosome (genome)-wise level in the ISU, UOI, and joint data for the 26 analyzed traits. Of the 53 QTL detected in the joint data, only six were detected in both populations and for many, allele effects differed between the two crosses. Despite the lack of overlap between the two populations, joint analysis resulted in an increase in significance for many QTL, including detection of ten QTL that did not reach significance in either population. Confidence intervals for position also were smaller for several QTL. In contrast, 24 QTL, most of which were detected at chromosome-wise levels in the ISU or UOI population, were not detected in the joint data. Presence of paternally expressed QTL near the IGF2 region of SSC2 was confirmed, with major effects on backfat and loin muscle area, particularly in the UOI population, as well as one or more QTL for carcass composition in the distal arm of Chromosome 6. Results of this study suggest that joint analysis using a range of QTL models increases the power of QTL mapping and QTL characterization, which helps to identify genes for subsequent marker-assisted selection.  相似文献   
13.
Records on 361,300 Yorkshire, 154,833 Duroc, 99,311 Hampshire, and 71,097 Landrace pigs collected between 1985 and April of 2000 in herds on the National Swine Registry Swine Testing and Genetic Evaluation System were analyzed. Animal model and REML procedures were used to estimate random effects of animal genetic, common litter, maternal genetic, and the covariances between animal and maternal for lean growth rate (LGR), days to 113.5 kg (DAYS), backfat adjusted to 113.5 kg (BF), and loin eye area adjusted to 113.5 kg (LEA). Fixed effects of contemporary group and sex were also in the statistical model. Based on the single-trait model, estimates of heritabilities were 0.44, 0.44, 0.46, and 0.39 for LGR; 0.35, 0.40, 0.44, and 0.40 for DAYS; 0.48, 0.48, 0.49, and 0.48 for BF; and 0.33, 0.32, 0.35, and 0.31 for LEA in the Yorkshire, Duroc, Hampshire, and Landrace breeds, respectively. Estimates of maternal genetic effects were low and ranged from 0.01 to 0.05 for all traits across breeds. Estimates of common litter effects ranged from 0.07 to 0.16. A bivariate analysis was used to estimate the genetic correlations between lean growth traits. Average genetic correlations over four breeds were -0.83, -0.37, 0.44, -0.07, 0.08, and -0.37 for LGR with DAYS, BF, and LEA, DAYS with BF and LEA, and BF with LEA, respectively. Average genetic trends were 2.35 g/yr, -0.40 d/yr, -0.39 mm/yr, and 0.37 cm2/yr for LGR, DAYS, BF, and LEA, respectively. Results indicate that selection based on LGR can improve leanness and growth rate simultaneously and can be a useful biological selection criterion.  相似文献   
14.
Deciphering the rhizosphere microbiome for disease-suppressive bacteria   总被引:3,自引:0,他引:3  
Disease-suppressive soils are exceptional ecosystems in which crop plants suffer less from specific soil-borne pathogens than expected owing to the activities of other soil microorganisms. For most disease-suppressive soils, the microbes and mechanisms involved in pathogen control are unknown. By coupling PhyloChip-based metagenomics of the rhizosphere microbiome with culture-dependent functional analyses, we identified key bacterial taxa and genes involved in suppression of a fungal root pathogen. More than 33,000 bacterial and archaeal species were detected, with Proteobacteria, Firmicutes, and Actinobacteria consistently associated with disease suppression. Members of the γ-Proteobacteria were shown to have disease-suppressive activity governed by nonribosomal peptide synthetases. Our data indicate that upon attack by a fungal root pathogen, plants can exploit microbial consortia from soil for protection against infections.  相似文献   
15.
A 5-generation selection experiment in Yorkshire pigs for feed efficiency consists of a line selected for low residual feed intake (LRFI) and a random control line (CTRL). The objectives of this study were to use random regression models to estimate genetic parameters for daily feed intake (DFI), BW, backfat (BF), and loin muscle area (LMA) along the growth trajectory and to evaluate the effect of LRFI selection on genetic curves for DFI and BW. An additional objective was to compare random regression models using polynomials (RRP) and spline functions (RRS). Data from approximately 3 to 8 mo of age on 586 boars and 495 gilts across 5 generations were used. The average number of measurements was 85, 14, 5, and 5 for DFI, BW, BF, and LMA. The RRP models for these 4 traits were fitted with pen × on-test group as a fixed effect, second-order Legendre polynomials of age as fixed curves for each generation, and random curves for additive genetic and permanent environmental effects. Different residual variances were used for the first and second halves of the test period. The RRS models were fitted with the same fixed effects and residual variance structure as the RRP models and included genetic and permanent environmental random effects for both splines and linear Legendre polynomials of age. The RRP model was used for further analysis because the RRS model had erratic estimates of phenotypic variance and heritability, despite having a smaller Bayesian information criterion than the RRP model. From 91 to 210 d of age, estimates of heritability from the RRP model ranged from 0.10 to 0.37 for boars and 0.14 to 0.26 for gilts for DFI, from 0.39 to 0.58 for boars and 0.55 to 0.61 for gilts for BW, from 0.48 to 0.61 for boars and 0.61 to 0.79 for gilts for BF, and from 0.46 to 0.55 for boars and 0.63 to 0.81 for gilts for LMA. In generation 5, LRFI pigs had lower average genetic curves than CTRL pigs for DFI and BW, especially toward the end of the test period; estimated line differences (CTRL-LRFI) for DFI were 0.04 kg/d for boars and 0.12 kg/d for gilts at 105 d and 0.20 kg/d for boars and 0.24 kg/d for gilts at 195 d. Line differences for BW were 0.17 kg for boars and 0.69 kg for gilts at 105 d and 3.49 kg for boars and 8.96 kg for gilts at 195 d. In conclusion, selection for LRFI has resulted in a lower feed intake curve and a lower BW curve toward maturity.  相似文献   
16.
Several studies have shown that selection of purebreds for increased performance of their crossbred descendants under field conditions is hampered by low genetic correlations between purebred and commercial crossbred (CC) performance. Although this can be addressed by including phenotypic data from CC relatives for selection of purebreds through combined crossbred and purebred selection (CCPS), this also increases rates of inbreeding and requires comprehensive systems for collection of phenotypic data and pedigrees at the CC level. This study shows that both these limitations can be overcome with marker-assisted selection (MAS) by using estimates of the effects of markers on CC performance. To evaluate the potential benefits of CC-MAS, a model to incorporate marker information in selection strategies was developed based on selection index theory, which allows prediction of responses and rates of inbreeding by using standard deterministic selection theory. Assuming a genetic correlation between purebred and CC performance of 0.7 for a breeding program representing a terminal sire line in pigs, CC-MAS was shown to substantially increase rates of response and reduce rates of inbreeding compared with purebred selection and CCPS, with 60 CC half sibs available for each purebred selection candidate. When the accuracy of marker-based EBV was 0.6, CC-MAS resulted in 34 and 10% greater responses in CC performance than purebred selection and CCPS. Corresponding rates of inbreeding were 1.4% per generation for CC-MAS, compared with 2.1% for purebred selection and 3.0% for CCPS. For marker-based EBV with an accuracy of 0.9, CC-MAS resulted in 75 and 43% greater responses than purebred selection and CCPS, and further reduced rates of inbreeding to 1.0% per generation. Selection on marker-based EBV derived from purebred phenotypes resulted in substantially less response in CC performance than in CC-MAS. In conclusion, effective use of MAS requires estimates of the effect on CC performance, and MAS based on such estimates enables more effective selection for CC performance without the need for extensive pedigree recording and while reducing rates of inbreeding.  相似文献   
17.
在奶牛业中,像单核苷酸多态性(Single-NucleotidePolymorphism,SNPs)基分型、基因组选择和基因组育种值这样的术语已经存在多年了。在养猪业中,与猪基因组序列测定相关的技术起步相对晚些,但是现今进展顺利。我们目前进展如何,并且该技术对养猪业的贡献如何?  相似文献   
18.
Stochastic computer simulation was used to investigate the potential extra genetic gains obtained from gene-assisted selection (GAS) by combining 1) optimization of genetic contributions for maximizing gain, while restricting the rate of inbreeding with 2) optimization of the relative emphasis given to the QTL over generations. The genetic model assumed implied a mixed inheritance model in which a single quantitative trait locus (i.e., QTL) is segregating together with polygenes. When compared with standard GAS (i.e., fixed contributions and equal emphasis on the QTL and polygenic EBV), combined optimization of contributions of selection candidates and weights on the QTL across generations allowed substantial increases in gain at a fixed rate of inbreeding and avoided the conflict between short- and long-term responses in GAS schemes. Most of the increase of gain was produced by optimization of selection candidates' contributions. Optimization of the relative emphasis given to the QTL over generations had, however, a greater effect on avoiding the long-term loss usually observed in GAS schemes. Optimized contribution schemes led to lower gametic phase disequilibrium between the QTL and polygenes and to higher selection intensities both on the QTL and polygenes than with standard truncation selection with fixed contributions of selection candidates.  相似文献   
19.
Growth, meat quality, and carcass traits are of economic importance in swine breeding. Understanding their genetic basis in purebred (PB) and commercial crossbred (CB) pigs is necessary for a successful breeding program because, although the breeding goal is to improve CB performance, phenotype collection and selection are usually carried out in PB populations housed in biosecure nucleus herds. Thus, the selection is indirect, and the accuracy of selection depends on the genetic correlation between PB and CB performance (rpc). The objectives of this study were to 1) estimate genetic parameters for growth, meat quality, and carcass traits in a PB sire line and related commercial CB pigs and 2) estimate the corresponding genetic correlations between purebred and crossbred performance (rpc). Both objectives were investigated by using pedigree information only (PBLUP) and by combining pedigree and genomic information in a single-step genomic BLUP (ssGBLUP) procedure. Growth rate showed moderate estimates of heritability for both PB and CB based on PBLUP, while estimates were higher in CB based on ssGBLUP. Heritability estimates for meat quality traits were diverse and slightly different based on PB and CB data with both methods. Carcass traits had higher heritability estimates based on PB compared with CB data based on PBLUP and slightly higher estimates for CB data based on ssGBLUP. A wide range of estimates of genetic correlations were obtained among traits within the PB and CB data. In the PB population, estimates of heritabilities and genetic correlations were similar based on PBLUP and ssGBLUP for all traits, while based on the CB data, ssGBLUP resulted in different estimates of genetic parameters with lower SEs. With some exceptions, estimates of rpc were moderate to high. The SE on the rpc estimates was generally large when based on PBLUP due to limited sample size, especially for CBs. In contrast, estimates of rpc based on ssGBLUP were not only more precise but also more consistent among pairs of traits, considering their genetic correlations within the PB and CB data. The wide range of estimates of rpc (less than 0.70 for 7 out of 13 traits) indicates that the use of CB phenotypes recorded on commercial farms, along with genomic information, for selection in the PB population has potential to increase the genetic progress of CB performance.  相似文献   
20.
The aims of this study were (i) to describe the changes in the volume of large ovarian follicles (diameter >3 cm) during the 48 h egg laying cycle in farmed ostriches, and (ii) to quantify factors affecting the volume of the largest measured follicle and the plasma concentrations of progesterone (P4) and estradiol‐17β (E2β). In eight egg‐producing birds, which all ovulated during the study period, transcutaneous ultrasound scanning and blood sampling was performed at 3 h intervals. The average volume of the total number of visualized large follicles (Vtotal), the largest measured follicle (VF1), the second largest follicle (VF2) and of all follicles smaller than F2 (VF3–Fn) were each higher before than after oviposition. Vtotal, VF2 and VF3–Fn nearly doubled in the 24‐h period before oviposition, while VF1 remained at an equal, rather high level until oviposition. Immediately after oviposition Vtotal, as well as the volume of the other follicle categories, decreased within 6 h, i.e. around the moment of ovulation. By performing statistical analysis on the basis of linear mixed‐effects modelling, we quantified that: (i) VF1 was 13.2% higher before than after oviposition and increased with 6.5% when LH increased with 1 ng/ml; (ii) P4 levels were 93.2% higher before than after oviposition and increased with 43.1% for every 3 h closer to oviposition; when LH and E2β levels and VF1 increased with 1 ng/ml, 10 pg/ml and 10 ml, respectively, P4 increased with 116.6%, 50% and 6.1%; and (iii) E2β levels were 35.6% higher before than after oviposition, increased with 2.7% for every 3 h closer to oviposition and increased with 14.6% when LH increased with 1 ng/ml. It is concluded that during the egg‐laying cycle in ostriches: (i) follicular mass, as estimated by the volume of visualized follicles larger than 3 cm, increases before and decreases after ovulation, and (ii) follicular dynamics and its accompanying endocrine plasma hormone profiles during the egg‐laying cycle in ostriches follow a pattern similar to that in chickens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号