首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   6篇
林业   1篇
综合类   1篇
畜牧兽医   99篇
  2023年   1篇
  2022年   3篇
  2021年   9篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   9篇
  2011年   6篇
  2010年   7篇
  2009年   1篇
  2008年   9篇
  2007年   7篇
  2006年   4篇
  2005年   10篇
  2004年   5篇
  2003年   2篇
  2002年   1篇
  2001年   7篇
  2000年   2篇
  1999年   3篇
  1994年   1篇
排序方式: 共有101条查询结果,搜索用时 15 毫秒
71.
Genetic parameters for a random regression model of growth in Gelbvieh beef cattle were constructed using existing estimates. Information for variances along ages was provided by parameters used for routine Gelbvieh multiple-trait evaluation, and information on correlations among different ages was provided by random regression model estimates from literature studies involving Nellore cattle. Both sources of information were combined into multiple-trait estimates; corrected for continuity, smoothness, and general agreement with literature estimates; and extrapolated to 730 d. Covariance functions using standardized Legendre polynomials were fit for the following effects: additive genetic (direct and maternal), and animal and maternal permanent environment. Residual variances at different ages were fitted using linear splines with three knots. Fit was by least squares. The order of polynomials was varied from third to sixth. Increasing the fit beyond cubic provided small improvements in R2 and increased the number of small eigenvalues of covariance matrices, especially for the additive effect. Parameters for a random regression model in beef cattle can be constructed with negligible artifacts from literature estimates. Formulas can easily be modified for other types of polynomials and splines.  相似文献   
72.
Data of broiler chickens for 2 pure lines across 3 generations were used for genomic evaluation. A complete population (full data set; FDS) consisted of 183,784 and 164,246 broilers for the 2 lines. The genotyped subsets (SUB) consisted of 3,284 and 3,098 broilers with 57,636 SNP. Genotyped animals were preselected based on more than 20 traits with different index applied to each line. Three traits were analyzed: BW at 6 wk (BW6), ultrasound measurement of breast meat (BM), and leg score (LS) coded 1 = no and 2 = yes for leg defect. Some phenotypes were missing for BM. The training population consisted of the first 2 generations including all animals in FDS or only genotyped animals in SUB. The validation data set contained only genotyped animals in the third generation. Genetic evaluations were performed using 3 approaches: 1) phenotypic BLUP, 2) extending BLUP methodologies to utilize pedigree and genomic information in a single step (ssGBLUP), and 3) Bayes A. Whereas BLUP and ssGBLUP utilized all phenotypic data, Bayes A could use only those of the genotyped subset. Heritabilities were 0.17 to 0.20 for BW6, 0.30 to 0.35 for BM, and 0.09 to 0.11 for LS. The average accuracies of the validation population with BLUP for BW6, BM, and LS were 0.46, 0.30, and <0 with SUB and 0.51, 0.34, and 0.28 with FDS. With ssGBLUP, those accuracies were 0.60, 0.34, and 0.06 with SUB and 0.61, 0.40, and 0.37 with FDS, respectively. With Bayes A, the accuracies were 0.60, 0.36, and 0.09 with SUB. With SUB, Bayes A and ssGBLUP had similar accuracies. For traits of high heritability, the accuracy of Bayes A/SUB and ssGBLUP/FDS were similar, and up to 50% better than BLUP/FDS. However, with low heritability, ssGBLUP/FDS was 4 to 6 times more accurate than Bayes A/SUB and 50% better than BLUP/FDS. An optimal genomic evaluation would be multi-trait and involve all traits and records on which selection is based.  相似文献   
73.
This study explored distributions of diagonal elements of genomic relationship matrix (G), evaluated the utility of G as a diagnostic tool to detect mislabelled animals in a genomic dataset and evaluated the effect of mislabelled animals on the accuracy of genomic evaluation. Populations of 10 000 animals were simulated with 60 000 SNP varying in allele frequency at each locus between 0.02 and 0.98. Diagonal elements of G were distributed with a single peak (mean = 1.00 ± 0.03) and ranged from 0.84 through 1.36. Mixed populations were also simulated: 7 000 animals with frequencies of second alleles ranging from 0.02 through 0.98 were combined with 1750 or 7000 animals with frequencies of second alleles ranging from 0.0 through 1.0. The resulting distributions of diagonal elements of G were bimodal. Body weight at 6 weeks was provided by Cobb-Vantress for broiler chickens, of which 3285 were genotyped for 57 636 SNP. Analysis used a combined genomic and pedigree relationship matrix; G was scaled using current allele frequencies. The distribution of diagonal elements was multimodal and ranged from 0.54 to 3.23. Animals with diagonal elements >1.5 were identified as coming from another chicken line or as having low call rates. Removal of mislabelled animals increased accuracy by 0.01. For the studied type of population, diagonal elements of G may be a useful tool to help identify mislabelled animals or secondary populations.  相似文献   
74.
The objective of this study was to identify issues in genetic evaluation of beef cattle for growth by a random regression model (RRM). Genetic evaluation data included 2,946,847 records of up to nine sequential weights of 812,393 Nellore cattle measured at ages ranging from birth to 733 d. Models considered were a five-trait multiple-trait model (MTM) and a cubic RRM. The MTM included the effects of contemporary group, age of dam class, additive direct, additive maternal, and maternal permanent environment. Both additive effects were assumed correlated. The RRM included the same effects as MTM, with the addition of permanent and random error effects. The purpose of the random error effect, which was in addition to a residual effect with constant variance, was to model heterogeneous residual variances. All effects in RRM were modeled as cubic Legendre polynomials. Expected progeny differences (EPD) were obtained iteratively using a preconditioned conjugate gradient algorithm. Numerically accurate solutions with RRM were not obtained until the random regressions were orthogonalized. Computing requirements of RRM were reduced by more than 50%, without affecting the accuracy by removing regressions corresponding to very low eigen-values and by replacing the random error effects with weights. Afterward, the correlations between EPD from RRM and from MTM for EPD on selected weights were between 0.84 and 0.89. For sires with at least 50 progeny, these correlations increased to 0.92 to 0.97. Low correlations were caused by differences in parameters. The RRM applied to growth i s prone to numerical problems. Estimates of EPD with RRM may be more accurate than those with MTM only if accurate parameters are applied.  相似文献   
75.
Estimates of direct and maternal genetic parameters in beef cattle were obtained with a random regression model with a linear spline function (SFM) and were compared with those obtained by a multitrait model (MTM). Weight data of 18,900 Gelbvieh calves were used, of which 100, 75, and 17% had birth (BWT), weaning (WWT), and yearling (YWT) weights, respectively. The MTM analysis was conducted with a three-trait maternal animal model. The MTM included an overall linear partial fixed regression on age at recording for WWT and YWT, and direct-maternal genetic and maternal permanent environmental effects. The SFM included the same effects as MTM, plus a direct permanent environmental effect and heterogeneous residual variance. Three knots, or breakpoints, were set to 1, 205, and 365 d. (Co)variance components in both models were estimated with a Bayesian implementation via Gibbs sampling using flat priors. Because BWT had no variability of age at recording, there was good agreement between corresponding components of variance estimated from both models. For WWT and YWT, with the exception of the sum of direct permanent environmental and residual variances, there was a general tendency for SFM estimates of variances to be lower than MTM estimates. Direct and maternal heritability estimates with SFM tended to be lower than those estimated with MTM. For example, the direct heritability for YWT was 0.59 with MTM, and 0.48 with SFM. Estimated genetic correlations for direct and maternal effects with SFM were less negative than those with MTM. For example, the direct-maternal correlation for WWT was -0.43 with MTM and -0.33 with SFM. Estimates with SFM may be superior to MTM due to better modeling of age in both fixed and random effects.  相似文献   
76.
To study the genetic relationship between three grouped reasons for sow removal (SR) in consecutive parities, accounting for censoring, 13,838 records from Large White sows were analyzed. Data were from seven pure-line farms having, on average, 5.9% unknown SR. Three traits were subjectively defined, each corresponding to a classification of SR (reproductive [RR], nonreproductive [RN], and others [RO]). Records for each trait could take one of five categories, according to parity at removal (0 to 4 or later). A multivariate linear censored model was implemented. The model to estimate (co)variance components and parameters included the effects of year-season, region, contemporary group, and additive genetic effects. The most common SR was related to reproduction (48.5%). Diseases of different origin and cause, old age/parity, and sow death or loss accounted for about 18, 7, and 4% of total culls, respectively. Estimates of variance components showed heterogeneity of additive genetic and residual variances for the three traits. Estimates of heritability were 0.18, 0.13, and 0.15 for RR, RN, and RO, respectively. Genetic correlations between removal codes were high (> or =0.90). Results suggest sizeable additive genetic variances exist for parity at removal and different codes of removal. Different SR reasons seem to operate similarly or as a closely related genetic trait associated with fitness. In particular, RN and RO seem to be genetically indistinguishable. Data structure, definition, and volume are major limitations in studies of sow survival. A multiple-trait censored model is preferred to evaluate reasons of sow disposal. Grouped removal causes seem to be strongly genetically correlated but with heterogeneous variances, suggesting that combining all removal causes and treating the trait as parity at disposal is an alternative approach.  相似文献   
77.
Parameters for direct and maternal dominance were estimated in models that included non-additive genetic effects. The analyses used weaning weight records adjusted for age of dam from populations of Canadian Hereford (n = 467,814), American Gelbvieh (n = 501,552), and American Charolais (n = 314,552). Method R estimates of direct additive genetic, maternal additive genetic, permanent maternal environment, direct dominance, and maternal dominance variances as a proportion of the total variance were 23, 12, 13, 19, and 14% in Hereford; 27, 7, 10, 18, and 2% in Gelbvieh; and 34, 15, 15, 23, and 2% in Charolais. The correlations between direct and maternal additive genetic effects were -0.30, -0.23, and -0.47 in Hereford, Gelbvieh, and Charolais, respectively. The correlations between direct and maternal dominance were -0.38, -0.02, and -0.04 in Hereford, Gelbvieh, and Charolais, respectively. Estimates of inbreeding depression were -0.20, -0.18, and -0.13 kg per 1% of inbreeding for Hereford, Gelbvieh, and Charolais, respectively. Estimates of the maternal inbreeding depression were -0.01, -0.02, and -0.02 kg, respectively. The high ratio of direct dominance to additive genetic variances provided some evidence that direct dominance effects should be considered in beef cattle evaluation. However, maternal dominance effects seemed to be important only for Hereford cattle.  相似文献   
78.
79.
Two simulated data sets and one commercial data set were used to evaluate computing options for models in which the effects attributable to QTL were fit as covariables. The simulated data sets included records on 24,000 animals for 10 traits. Data sets 1 and 2 were simulated with low and high correlations among traits, respectively. The model included an overall mean, 160 covariables as effects attributable to QTL, the random animal genetic effect, and the random residual effect. A commercial data set included records on approximately 110,000 animals for 11 growth, reproduction, and other traits. The model included the effects usually fitted for these traits as well as 116 covariables as effects attributable to QTL; models including the number of covariables varied by trait. Initial computing was by the BLUP90IOD program, which applies iterations on data by using a preconditioned conjugate gradient algorithm with a diagonal preconditioner. Modifications included adding block preconditioners for effects attributable to QTL (BQ) and for traits (BT). With the simulated data sets and the original program, one-trait analyses without the covariables took 7 s, whereas the 10-trait analyses with the covariables took 15 min for a data set with low correlations and 1 h 40 m for a data set with high correlations. The BQ improved the convergence rate but increased the computing time. The BT decreased the computing time from 1.5 times (low correlations) to 7 times (high correlation) at a cost of greater memory requirements. For the commercial data and the complete model, computing took 10.3 h with the unmodified program and was reduced to 6 h with BT. Relative changes in computing time and convergence rate with the commercial data set were close to those of the simulated data set, with low correlations among the traits. The BQ decreased the number of rounds by less than expected. Genetic evaluation with a large number of effects attributable to QTL fit as covariables is feasible.  相似文献   
80.
Individual records from 49,788 Large White piglets were used to evaluate preweaning mortality and its relationship with birth weight (BW). Preweaning mortality included farrowing mortality (TM) was also divided into stillbirth (SB), early (EM), late (LM) and total (ELM) preweaning mortality. Farrowing mortality was also studied as a sow's trait as number of piglets born dead (NBD). Threshold-linear models were used via MCMC. Traits included (1) TM-BW, (2) SB-ELM-BW, (3) SB-EM-LM and (4) NBD-ELM-BW. Model for BW included parity number, litter size, sex, contemporary group (farm-farrowing year-month), litter, and direct and maternal additive genetic effects. For mortality traits, litter effect was of the nursing litter for cross-fostered piglets (4.9%). Models for SB (2, 3) and NBD (4) excluded the effect of sex. In Model 3, BW was fitted as covariable for EM and LM. Estimates of direct and maternal heritability for BW were 0.03–0.06 and 0.14–0.19; and for mortality traits 0.03–0.12 and 0.08–0.12. Direct-maternal correlations were negative for all traits. Genetic correlations between all mortality traits were positive. Results confirmed the importance of BW for the genetic evaluation of piglet mortality. Early mortality is a good candidate for improvement of TM because of larger heritability and high genetic correlations with other mortality traits. It is most efficient to treat SB at sow level and preweaning mortality at the piglet level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号