首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   6篇
林业   1篇
综合类   1篇
畜牧兽医   99篇
  2023年   1篇
  2022年   3篇
  2021年   9篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   9篇
  2011年   6篇
  2010年   7篇
  2009年   1篇
  2008年   9篇
  2007年   7篇
  2006年   4篇
  2005年   10篇
  2004年   5篇
  2003年   2篇
  2002年   1篇
  2001年   7篇
  2000年   2篇
  1999年   3篇
  1994年   1篇
排序方式: 共有101条查询结果,搜索用时 15 毫秒
31.
This study compared the accuracy of several models for obtaining genetic evaluations of calving difficulty. The models were univariate threshold animal (TAM), threshold sire-maternal grandsire (TSM), linear animal (LAM), and linear sire-maternal grandsire (LSM) models and bivariate threshold-linear animal (TLAM), threshold-linear sire-maternal grandsire (TLSM), linear-linear animal (LLAM), and linear-linear sire-maternal grandsire (LLSM) models for calving difficulty and birth weight. Data were obtained from the American Gelbvieh Association and included 84,420 first-parity records of both calving difficulty and birth weight. Calving difficulty scores were distributed as 73.4% in the first category (no assistance), 18.7% in the second, 6.3% in the third, and 1.6% in the fourth. Included in the animal models were fixed sex of calf by age of dam subclasses, random herd-year-season effects, and random animal direct and maternal breeding values. Sire-maternal grandsire models were similar to the animal models, with animal and maternal effects replaced by sire and maternal grandsire effects. Models were compared using a data splitting technique based on the correlation of estimated breeding values from two samples, with one-half of the calving difficulty records discarded randomly in the first sample and the remaining calving difficulty records discarded in the second sample. Reported correlations are averages of 10 replicates. The results obtained using animal models confirmed the slight advantage of TAM over LAM (0.69 vs 0.63) and TLAM over LLAM (0.90 vs 0.86). Bivariate analyses greatly improved the accuracy of genetic prediction of direct effects on calving difficulty relative to univariate analyses. Similar ranking of the models was found for maternal effects, but smaller correlations were obtained for bivariate models. For sire-maternal grandsire models, no differences between sire or maternal grandsire correlations were observed for TLSM compared to LLSM, and small differences were observed between TSM and LSM. The threshold model offered advantages over the linear model in animal models but not in sire-maternal grandsire models. For genetic evaluation of calving difficulty in beef cattle, the threshold-linear animal model seems to be the best choice for predicting both direct and maternal effects.  相似文献   
32.
This work studied differences between expected (calculated from pedigree) and realized (genomic, from markers) relationships in a real population, the influence of quality control on these differences, and their fit to current theory. Data included 4940 pure line chickens across five generations genotyped for 57 636 SNP. Pedigrees (5762 animals) were available for the five generations, pedigree starting on the first one. Three levels of quality control were used. With no quality control, mean difference between realized and expected relationships for different type of relationships was ≤ 0.04 with standard deviation ≤ 0.10. With strong quality control (call rate ≥ 0.9, parent‐progeny conflicts, minor allele frequency and use of only autosomal chromosomes), these numbers reduced to ≤ 0.02 and ≤ 0.04, respectively. While the maximum difference was 1.02 with the complete data, it was only 0.18 with the latest three generations of genotypes (but including all pedigrees). Variation of expected minus realized relationships agreed with theoretical developments and suggests an effective number of loci of 70 for this population. When the pedigree is complete and as deep as the genotypes, the standard deviation of difference between the expected and realized relationships is around 0.04, all categories confounded. Standard deviation of differences larger than 0.10 suggests bad quality control, mistakes in pedigree recording or genotype labelling, or insufficient depth of pedigree.  相似文献   
33.
In the pig industry, purebred animals are raised in nucleus herds and selected to produce crossbred progeny to perform in commercial environments. Crossbred and purebred performances are different, correlated traits. All purebreds in a pen have their performance assessed together at the end of a performance test. However, only selected crossbreds are removed (based on visual inspection) and measured at different times creating many small contemporary groups (CGs). This may reduce estimated breeding value (EBV) prediction accuracies. Considering this sequential recording of crossbreds, the objective was to investigate the impact of different CG definitions on genetic parameters and EBV prediction accuracy for crossbred traits. Growth rate (GP) and ultrasound backfat (BFP) records were available for purebreds. Lifetime growth (GX) and backfat (BFX) were recorded on crossbreds. Different CGs were tested: CG_all included farm, sex, birth year, and birth week; CG_week added slaughter week; and CG_day used slaughter day instead of week. Data of 124,709 crossbreds were used. The purebred phenotypes (62,274 animals) included three generations of purebred ancestors of these crossbreds and their CG mates. Variance components for four-trait models with different CG definitions were estimated with average information restricted maximum likelihood. Purebred traits’ variance components remained stable across CG definitions and varied slightly for BFX. Additive genetic variances (and heritabilities) for GX fluctuated more: 812 ± 36 (0.28 ± 0.01), 257 ± 15 (0.17 ± 0.01), and 204 ± 13 (0.15 ± 0.01) for CG_all, CG_week, and CG_day, respectively. Age at slaughter (AAS) and hot carcass weight (HCW) adjusted for age were investigated as alternatives for GX. Both have potential for selection but lower heritabilities compared with GX: 0.21 ± 0.01 (0.18 ± 0.01), 0.16 ± 0.02 (0.16 + 0.01), and 0.10 ± 0.01 (0.14 ± 0.01) for AAS (HCW) using CG_all, CG_week, and CG_day, respectively. The predictive ability, linear regression (LR) accuracy, bias, and dispersion of crossbred traits in crossbreds favored CG_day, but correlations with unadjusted phenotypes favored CG_all. In purebreds, CG_all showed the best LR accuracy, while showing small relative differences in bias and dispersion. Different CG scenarios showed no relevant impact on BFX EBV. This study shows that different CG definitions may affect evaluation stability and animal ranking. Results suggest that ignoring slaughter dates in CG is more appropriate for estimating crossbred trait EBV for purebred animals.  相似文献   
34.
Genomic information has a limited dimensionality (number of independent chromosome segments [Me]) related to the effective population size. Under the additive model, the persistence of genomic accuracies over generations should be high when the nongenomic information (pedigree and phenotypes) is equivalent to Me animals with high accuracy. The objective of this study was to evaluate the decay in accuracy over time and to compare the magnitude of decay with varying quantities of data and with traits of low and moderate heritability. The dataset included 161,897 phenotypic records for a growth trait (GT) and 27,669 phenotypic records for a fitness trait (FT) related to prolificacy in a population with dimensionality around 5,000. The pedigree included 404,979 animals from 2008 to 2020, of which 55,118 were genotyped. Two single-trait models were used with all ancestral data and sliding subsets of 3-, 2-, and 1-generation intervals. Single-step genomic best linear unbiased prediction (ssGBLUP) was used to compute genomic estimated breeding values (GEBV). Estimated accuracies were calculated by the linear regression (LR) method. The validation population consisted of single generations succeeding the training population and continued forward for all generations available. The average accuracy for the first generation after training with all ancestral data was 0.69 and 0.46 for GT and FT, respectively. The average decay in accuracy from the first generation after training to generation 9 was −0.13 and −0.19 for GT and FT, respectively. The persistence of accuracy improves with more data. Old data have a limited impact on the predictions for young animals for a trait with a large amount of information but a bigger impact for a trait with less information.  相似文献   
35.
Effect of different genomic relationship matrices on accuracy and scale   总被引:1,自引:0,他引:1  
Phenotypic data on BW and breast meat area were available on up to 287,614 broilers. A total of 4,113 birds were genotyped for 57,636 SNP. Data were analyzed by a single-step genomic BLUP (ssGBLUP), which accounts for all phenotypic, pedigree, and genomic information. The genomic relationship matrix (G) in ssGBLUP was constructed using either equal (0.5; GEq) or current (GC) allele frequencies, and with all SNP or with SNP with minor allele frequencies (MAF) below multiple thresholds (0.1, 0.2, 0.3, and 0.4) ignored. Additionally, a pedigree-based relationship matrix for genotyped birds (A(22)) was available. The matrices and their inverses were compared with regard to average diagonal (AvgD) and off-diagonal (AvgOff) elements. In A(22), AvgD was 1.004 and AvgOff was 0.014. In GEq, both averages decreased with the increasing thresholds for MAF, with AvgD decreasing from 1.373 to 1.020 and AvgOff decreasing from 0.722 to 0.025. In GC, AvgD was approximately 1.01 and AvgOff was 0 for all MAF. For inverses of the relationship matrices, all AvgOff were close to 0; AvgD was 2.375 in A(22), varied from 11.563 to 12.943 for GEq, and increased from 8.675 to 12.859 for GC as the threshold for MAF increased. Predictive ability with all GEq and GC was similar except that at MAF = 0.4, they declined by 0.01 for BW and improved by 0.01 for breast meat area. Compared with BLUP, EBV in the ssGBLUP were, on average, increased by up to 1 additive SD greater with GEq and decreased by 2 additive SD less with GC. Genotyped animals were biased upward with GEq and downward with GC. The biases and differences in EBV could be controlled by adding a constant to GC; they were eliminated with a constant of 0.014, which corresponds to AvgOff in A(22). Unbiased evaluation in the ssGBLUP may be obtained with GC scaled to be compatible with A(22). The reduction of SNP with small MAF has a small effect on the real accuracy, but it may falsely increase the estimated accuracies by inversion.  相似文献   
36.
37.
The aim of this study was to investigate the possible superiority of a threshold-linear (TL) approach for calving day (CD) and calving success (CS) analysis in beef cattle over 2 multiple-trait (MT), censored models, considering CD at the first 3 calving opportunities. The CD observations on animals that failed to calve in the latter models were defined as cows being assigned a penalty value of 21 d beyond the last observed CD record within contemporary group (PEN model) or censored CD values that were randomly obtained from a truncated normal distribution (CEN-model). In the TL model, CD records were treated as missing if a cow failed to calve, and parameters were estimated in a TL analysis including CS traits (TLMISS-model). The models included the effects of contemporary group (herd x year of calving x mating management), age at calving, physiological status at mating (lactating or nonlactating cow), animal additive genetic effects, and residual. Field data included 6,763 calving records obtained from first, second, and third parities of 3,442 spring-calving Uruguayan Aberdeen Angus cows. Models were contrasted using a data splitting technique, analyzing correlations between predicted breeding values (PBV) for each pair of subsamples, by rank correlations between PBV obtained with the different models, and by inspecting percentage of sires selected in common using the different approaches at 10 and 25% hypothetical percentages of animals selected. Breeding value correlations of CD between the subsamples for the TLMISS approach were greater (0.67 to 0.68) than correlations for the censored MT models (0.49 to 0.54). Average correlations between PBV of CD in 1 subsample obtained by CEN (PEN, TLMISS) and PBV of CS in the other subsample were -0.53 (-0.55, -0.60) in the first calving opportunity (CO), -0.54 (-0.58, -0.63) in the second CO, and -0.50 (-0.49, -0.58) in the third CO. Rank correlations between PBV for CD in PEN and CEN were high (0.93 to 0.97), but correlations of either method with PBV of CD in TLMISS ranged from 0.50 to 0.71. Common identification of bulls for the top 10% of sires (25% of sires), when selected with PEN/CEN models or the TLMISS model, varied between 50 (44%) and 60 (52%). The use of the TL animal model for genetic evaluation seems attractive for genetic evaluation of fertility traits in beef cattle.  相似文献   
38.
This study examined the utility of serial weights from FIRE (Feed Intake Recording Equipment, Osborne Industries, Inc., Osborne, KS, USA) stations for an analysis of daily gain. Data included 884 132 body weight records from 3888 purebred Duroc pigs. Pigs entered the feeder station at age 77–149 days and left at age 95–184 days. A substantial number of records were abnormal, showing body weight close to 0 or up to twice the average weight. Plots of body weights for some animals indicated two parallel growth curves. Initial editing used a robust regression, which was a two‐step procedure. In the first step, a quadratic growth curve was estimated assuming small or 0 weights for points far away from the curve; the process is iterative. In the second step, weights more than 1.5 SD from the estimated growth curve were treated as outliers. The retained body weight records (607 597) were averaged to create average daily weight (170 443) and then used to calculate daily gains (152 636). Additional editing steps included retaining only animals with ≥50 body weight records and SD of the daily gain ≤2 kg, followed by removing records outside 3 SD from the mean for given age, across all the animals – the resulting data set included 69 068 records of daily gain from 1921 animals. Daily gain based on daily, weekly and bi‐weekly intervals was analysed using repeatability models. Heritability estimates were 0.04, 6 and 9%, respectively. The last two estimates correspond to heritability of 28% for a 12 week interval. For daily gain averaged weekly, the estimate of heritability obtained with a random regression model varied from 0.07 to 0.10. After extensive editing, body weight records from automatic feeding stations are useful for genetic analyses of daily gain from weekly or bi‐weekly but not daily intervals.  相似文献   
39.
Genetic parameters for daily feed intake (DFI, g/day) and daily gain (DG, g/day) were estimated using records of 1916 Duroc boars from electronic feeder stations. Management was limited and resulted in varied ranges of age and weight on test. Boars were housed in 102 pens, each equipped with one feeder, and allowed ad libitum feeding. Weekly averages of DFI and DG were used due to large variation in daily records. Six traits were defined as DFI and DG during 85–106 (period 1), 107–128 (period 2) and 129–150 days of age (period 3). A six‐trait model included age as a linear and a quadratic covariate for DFI and a linear covariate for DG with a fixed effect of year–week–pen and random effects of litter, additive genetic animal and permanent environmental animal. Variance components were estimated by a Bayesian approach using Gibbs sampling algorithm. Estimates of heritability for respective periods were 18%, 12% and 10% for DFI and 21%, 11% and 10% for DG. Genetic correlations between DFI and DG in the same period were 0.70, 0.73 and 0.32 for the respective periods. DFI and DG obtained from automatic feeders can be analysed to reveal variation across testing periods by using weekly averages when many monthly averages are incomplete.  相似文献   
40.
This study was designed to determine the effect of intravenous lipopolysaccharide (LPS) administration on the secretion of interleukin (IL)‐1β and IL‐1 receptors (IL‐1Rs) gene expression in the hypothalamus of anoestrous ewes. Gene expression of IL‐1β and its receptors was assayed by the real‐time polymerase chain reaction. The expression of IL‐1β in the hypothalamus was detected using Western blot. Our results showed that IL‐1β mRNA is transcribed in the ovine hypothalamus. Lipopolysaccharide increased (p ≤ 0.01) the IL‐1β gene expression in the pre‐optic area 2.4‐fold, the anterior hypothalamus (AHA) 3.4‐fold, the medial basal hypothalamus 3.7‐fold and the medial eminence 3.9‐fold. The pro‐form and mature form of IL‐1β protein were found in the hypothalamus after endotoxin injection. In general, the endotoxin also increased more than two times (p ≤ 0.01) the expression of IL‐1 receptor type I (IL‐1R1) and type II (IL‐1R2) genes in the hypothalamus, except the AHA, where the number of IL‐1R2 mRNA was extremely low and not sufficient to the quantitative analysis. These results demonstrate that the peripheral immune/inflammatory challenge increases the IL‐1β expression in the hypothalamus. This endogenous IL‐1β seems to be involved in the modulation of processes which are regulated at the hypothalamic level. One of these processes could be a reproduction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号