首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   553篇
  免费   13篇
  国内免费   2篇
林业   37篇
农学   11篇
基础科学   1篇
  130篇
综合类   17篇
农作物   21篇
水产渔业   90篇
畜牧兽医   239篇
园艺   4篇
植物保护   18篇
  2023年   6篇
  2022年   12篇
  2021年   15篇
  2020年   8篇
  2019年   6篇
  2018年   5篇
  2017年   7篇
  2016年   19篇
  2015年   11篇
  2014年   18篇
  2013年   60篇
  2012年   19篇
  2011年   28篇
  2010年   16篇
  2009年   21篇
  2008年   51篇
  2007年   41篇
  2006年   43篇
  2005年   31篇
  2004年   24篇
  2003年   31篇
  2002年   18篇
  2001年   15篇
  2000年   15篇
  1999年   4篇
  1998年   2篇
  1995年   3篇
  1994年   2篇
  1993年   5篇
  1992年   4篇
  1991年   8篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1979年   1篇
  1974年   1篇
  1972年   1篇
  1971年   2篇
  1970年   1篇
  1967年   2篇
  1966年   1篇
排序方式: 共有568条查询结果,搜索用时 15 毫秒
101.
Effects of Al (0–100 μM) and Si (0–2,000 μM) supplied singly or in combination on root growth of different rice varieties were examined under hydroponic conditions. Al addition inhibited root elongation of rice plants, and the inhibition increased with increasing amount of Al in the culture solution. Among 22 indica varieties and among 8 japonica varieties tested, IAC3 and Nakateshinsenbon were relatively tolerant to AI, respectively, whereas IR45 and Norinl were relatively sensitive to AI, respectively. Si exerted a beneficial effect at all levels of Si treatment on indica varieties, whereas Si supply resulted in a slight increase in the root dry weight of japonica varieties only at the highest level (2,000 μM Silo The alleviation of Al inhibition of rice root growth by Si was observed in the combination of Al and Si treatments. Alleviation was more pronounced for all the Si treatments in indica varieties than in japonica varieties, and the alleviation was maximum with 2,000 μM Si in IR45. The alleviation effect by Si was more pronounced in the AI-sensitive varieties than in the AI-tolerant varieties. The application of Si resulted in an increase in the contents of Al and Si in plants, and there was no relationship between the Al content and Al inhibition in plants.  相似文献   
102.
It is well known that when inorganic elements such as boron (B), calcium, cobalt, and manganese are added to media in combination or alone, they stimulate the germination and/or tube growth of various kinds of pollen (Schmücker 1933; Loo and Hwang 1944; Yamada 1958; Brewbaker and Kwack 1963). Among these elements, the stimulatory effect ofB is the most effective and generally recognized. Aluminum (Al) belongs along with B to Group IIIa in the periodic table, and Fähnrich and Ultlich (1964) reported that Al inhibited the germination and growth of the pollen tube of Petunia hybrida and Antirrhinum majus. However, stimulatory effects of Al on pollen germination or pollen tube growth had not been previously reported.  相似文献   
103.
Aluminum (Al) toxicity is a major factor limiting yield production on acid soils (Foy 1983). The initial symptom of Al toxicity in many plants is manifested by the inhibition of root elongation (Ownby and Popham 1990; Llugany et al. 1994; Sasaki et al. 1994; Horst et al. 1997), which occurs during a very short period of time after exposure to Al (Llugany et al. 1994; Staß and Horst 1995). In a large number of recent reports, it was shown that the root apex plays a major role in the Al-sensitivity and response mechanisms (Zhang et al. 1994; Sasaki et al. 1997; Sivaguru and Horst 1998). However, it is interesting to note that stimulatory effects of Al on the growth of plants have also been reported in some studies (Chenery 1955; Konishi et al. 1985; Huang and Bachelard 1993; Osaki et al. 1997). In tea plant (Camellia sinensis L.) a stimulatory effect of Al on the growth was also demonstrated in some experiments, using intact plant (Chenery 1955; Konishi et al. 1985), cultured roots (Tsuji et al. 1994), and pollen tubes (Yokota et al. 1997). The growth of tea roots was typically more stimulated than that of shoots by Al (Konishi et al. 1985). It was assumed that Al effects might be due to the amelioration of phosphorus absorption (Konishi et al. 1985), secretion of malic acid from roots to dissolve aluminum phosphate in the rhizosphere (Jayman and Sivasubramaniam 1975), stimulation of growth of microorganisms on the root surface (Konishi 1990) or replacement of some functions of boron (Konishi 1992; Yokota et al. 1997). However, the stimulatory effects of Al on tea plant growth have not yet been el ucidated.

The formation of callose (1,3-β-glucan) has been reported as a common plant response to a variety of stresses, as well as mechanical, biophysical, chemical, and biological injury (Jaffe and Leopold 1984; Zhang et al. 1994). Increased synthesis of callose has been observed upon exposure to excess amounts of some elements, such as boron (McNairn and Currier 1965), cobalt, nickel, zinc (Peterson and Rauser 1979), and manganese (Wissemeier and Horst} 1987, 1992). Callose synthesis was also induced by Al in the roots of Triticum aestivum (Zhang et al. 1994) and Zea mays (Horst et al. 1997; Sivaguru and Horst 1998), suspension-cultured cells of Glycine max (Staß and Horst 1995), and protoplasts of Avena sativa (Schaeffer and Walton 1990) and Zea mays (Wagatsuma et al. 1995). Induction of callose synthesis in roots seems to be a very rapid physiological indicator of Al-induced injury or genotypical differences in Al sensitivity (Wissemeier and Horst 1992; Zhang et al. 1994; Horst et al. 1997). Nevertheless, Al-induced callose synthesis in tea plant, whose growth is stimulated by suitable Al concentrations, has not been described yet. Therefore, to elucidate the physiological basic effects of Al on tea plant, callose synthesis affected by Al in the root tips of intact plants was analyzed in the present study.  相似文献   
104.
Under iron deficient conditions, graminaceous plants secrete mugineic acid family phytosiderophores (MAs) from their roots to dissolve sparingly soluble iron compounds in the rhizosphere, and take up iron in the form of an Fe3+-MAs complex (Takagi 1976). A good correlation has been reported between the tolerance of Fe-deficiency and the amount of secreted MAs (Takagi 1993). Therefore, by using the genes involved in MAs biosynthesis, molecular breeding might produce transgenic plants tolerant to Fe-deficiency with a high level of MAs secretion. The biosynthetic pathway of MAs from L-methionine has been clarified (Fig. 1) and the enzymes participating in this process are now being investigated to isolate the genes responsible. Nicotianamine aminotransferase (NAAT) catalyzes the amino group transfer between nicotianamine (NA) and 2-oxoglutaric acid (Fig. 1). In order to purify NAAT, enzyme assay methods for NAAT have been developed and modified (Shojima et al. 1990; Ohata et al. 1993; Kanazawa et al. 1994). Some characteristics of NAAT have been reported using these enzyme assay methods (Kanazawa et al. 1994, 1995). Here, we further investigate some characteristics of this enzyme to improve the enzyme assay method, namely 1) the effect of K+ and Mg2+ on NAAT activity in vitro, and 2) the direct influence of MAs, Fe3+, and Fe2+ on NAAT activity. In addition, based on these results, the induction of enzyme activity by Fe-deficiency and suppression of the activity by Fe-resupply was investigated, by applying the new enzyme assay method.  相似文献   
105.
Increasing global atmospheric CO2 concentrations are expected to influence crop production. To investigate the effect on rice (Oryza sativa L.), plants were grown under ambient CO2 (AMB) or free-air CO2-enrichment (FACE) at CO2 concentrations ranged from 275 to 365 μmol mol−1 above AMB. We supplied 13CO2 to the plants at different growth stages so we could examine the contribution of carbohydrate stored during the vegetative stage or newly fixed carbohydrate produced during the grain-filling stage to ear weight at grain maturity. In plants supplied with 13C at the panicle-initiation or pre-heading stages, plants grown under FACE had more starch in the stems at heading, but there was no difference in stem 13C content. Furthermore, there were no differences between treatments in whole-plant 13C contents at heading and grain maturity. In contrast, plants supplied with 13C at the grain-filling stage had more 13C in the whole plant and the ears at grain maturity under FACE than under AMB, indicating that the increased amount of photosynthate produced at the grain-filling stage under CO2 enrichment might be effectively stored in the grains. Furthermore, regardless of when the 13C was supplied, plants had more 13C in starch in the ears at grain maturity under FACE than under AMB. Therefore, CO2 enrichment appears to promote partitioning of photosynthate produced during both vegetative and grain-filling stages to the grains.  相似文献   
106.
The definitive hosts of Metagonimus hakubaensis are reported to be hamsters, rats, mice, dogs, cats, chickens, and quails in experimental infection and Japanese water shrews in natural infection. Here we report that raccoon dogs are new natural definitive hosts of M. hakubaensis, based on morphological and molecular analyses of Metagonimus flukes collected from the host species from Aomori Prefecture, Japan. Moreover, M. hakubaensis recovered from raccoon dogs showed higher fecundity than those recovered from Japanese water shrews. Therefore, raccoon dogs were considered as a more suitable natural definitive host of M. hakubaensis than Japanese water shrews.  相似文献   
107.
Increasing the iron (Fe) and zinc (Zn) concentrations of staple foods, such as rice, could solve Fe and Zn deficiencies, which are two of the most serious nutritional problems affecting humans. Mugineic acid family phytosiderophores (MAs) play a very important role in the uptake of Fe from the soil and Fe transport within the plant in graminaceous plants. To explore the possibility of MAs increasing the Fe concentration in grains, we cultivated three transgenic rice lines possessing barley genome fragments containing genes for MAs synthesis (i.e., HvNAS1, HvNAS1, and HvNAAT-A and HvNAAT-B or IDS3) in a paddy field with Andosol soils. Polished rice seeds with IDS3 inserts had up to 1.40 and 1.35 times higher Fe and Zn concentrations, respectively, compared to non-transgenic rice seeds. Enhanced MAs production due to the introduced barley genes is suggested to be effective for increasing Fe and Zn concentrations in rice grains.  相似文献   
108.
109.
Reactivity of green tea catechins with formaldehyde   总被引:3,自引:0,他引:3  
In the reaction of green tea catechins with formaldehyde at room temperature (25°C), tea catechins were found to have reactivity. In particular, (-)-epicatechin gallate and (-)-epigallocatechin gallate, which have a galloyl moiety at the C-3 position, showed higher reactivity than (+)-catechin, (-)-epicatechin, or (-)-epigallocatechin. Reactivity of various kinds of simple phenolic compounds and flavonoids with formaldehyde was also examined. Among these compounds, only phloroglucinol showed reactivity to the same degree as that of nongalloylated catechins. These results suggest that factors for reactivity with formaldehyde at room temperature may be the presence of a phloroglucinolic A-ring structure and the absence of the electron-attractive group such as a carbonyl group in Cring. The comparison of the reactivity of 3-O-acylated catechins with that of 3-O-galloylated catechins indicated that only a galloyl group effectively enhanced reactivity with formaldehyde.  相似文献   
110.
Bovine Viral Diarrhea Virus (BVDV) is widespread in cattle in Brazil and research shows its large antigenic variability. Available vaccines are produced with virus strains isolated in other countries and may not be effective. In this study, inactivated vaccines containing the Brazilian BVDV-Ib IBSP11 isolate were developed and tested on 6 groups of 10 guinea pigs (Cavia porcellus). Animals in groups A and C received an aqueous vaccine (aluminum hydroxide); B and D groups received an oily vaccine (Montanide ISA50); Group E positive-control animals were given an imported commercial vaccine with BVDV-Ia Singer; Group F animals were sham vaccinated (negative control). Groups A, B and E received two doses, and Groups C and D, three, every 21 days. Twelve blood samples were taken, at 21-day intervals over 231 days, and evaluated for antibody titer through virus-neutralization (VN), using a homologous strain (IBSP11), and a heterologous strain (BVDV-Ia NADL). Most animals, 42 days following the first dose, seroconverted to both strains and, after the second dose, there was a significant increase of titers in all groups. The oily formulation induced greater response after the third administration. This increase was not observed with the aqueous vaccines, regardless of the virus used in the VN. Antibody decline was more rapid in animals that received aqueous vaccines. The results showed the importance of studying the influence of endemic strains of commercial vaccines, to improve the efficacy of BVD vaccination. Use of the endemic strain in vaccine formulation presented promising results, as well as the use of guinea pigs as a laboratory model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号