首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212篇
  免费   1篇
  国内免费   1篇
林业   3篇
农学   11篇
  46篇
综合类   11篇
农作物   6篇
水产渔业   11篇
畜牧兽医   121篇
园艺   2篇
植物保护   3篇
  2023年   1篇
  2022年   5篇
  2021年   6篇
  2020年   8篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   8篇
  2014年   8篇
  2013年   22篇
  2012年   12篇
  2011年   16篇
  2010年   8篇
  2009年   15篇
  2008年   15篇
  2007年   17篇
  2006年   19篇
  2005年   14篇
  2004年   10篇
  2003年   6篇
  2002年   5篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1989年   2篇
  1982年   1篇
排序方式: 共有214条查询结果,搜索用时 15 毫秒
141.
Yield responsiveness to elevated CO2 concentration [CO2] was previously found to be greater when nitrogen (N) was supplied in adequate amounts; however, it remains unclear whether genotypic differences in N2-fixing capacity affect yield responsiveness in soybean. We tested the hypothesis that yield responsiveness to elevated [CO2] in soybean is greater in a genotype with a higher capacity for N2 fixation. We used three near-isogenic genotypes with contrasting nodulation capacities: super-nodulating, normally nodulating and non-nodulating genotypes. Plants were subjected to two levels of [CO2] (ambient or elevated: ambient + 200 μmol mol−1) and two temperature regimes (low or high: low + ca. 4-5 °C) using temperature gradient chambers. The super-nodulating genotype exhibited a higher N content in leaves, regardless of [CO2] and temperature. Photosynthetic rates were enhanced by CO2 enrichment at earlier growth stages, but not at later growth stages, regardless of genotype. This photosynthetic acclimation was reflected in biomass production in all the genotypes examined. Yield responsiveness to elevated [CO2] was greater in the nodulating genotypes than in the non-nodulating genotype, but the genotypic differences were obscured between the normally nodulating and super-nodulating genotype, thus our hypothesis was not fully verified.  相似文献   
142.
The aim of this study was to elucidate the effect of fish-oil-derived monounsaturated fatty acids (MUFAs) containing large amounts of C20:1 and C22:1 isomers on metabolic disorders in mice. Male C57BL/6J mice were fed a 32% lard diet (control) or a 27% lard plus 5% saury-oil-derived MUFA diet for 6 weeks. Dietary MUFA improved insulin resistance and alleviated metabolic syndrome risk factors by reducing blood glucose and lipids. These favorable changes may be attributed to an improved adipocytokine profile. MUFA ingestion resulted in favorable changes in mRNA expression of genes involved in glucose/lipid metabolism (SCD-1, CPT1a, UCPs, and CS) as well as inflammation (MAC1, MMP3, and SAA3) and alterations in fatty acid composition. Our data suggest that marine MUFA improved glucose/lipid homeostasis and hindered the development of metabolic syndrome in obese mice.  相似文献   
143.
Eight cows were used to evaluate the effects of supplementation of soy sauce oil (SO) or Ca salts of fatty acids (FA) on rumen fermentation and milk production. The control diet (CO) consisted mainly of hay, corn silage and a concentrate. In the experimental diets, 400 g/day per cow of SO or FA (soybean oil and rapeseed oil) was supplemented to the CO diet. Experimental period for the three treatments was 14 days, and milk samples were taken during the last 2 days and rumen sample was taken on the last day. Dry matter intake was not affected by the treatments. The number of rumen protozoa at 0 h increased by SO and FA diets. Total volatile fatty acids at 2 h after feeding of SO diet was decreased compared to CO. The milk composition yield did not differ among treatments, although the percentages of fat and protein were decreased by SO and FA diets. The proportions of C8–C16 fatty acids in milk fat decreased, and those of C18 increased by SO and FA diets. The proportion of cis‐9, trans‐11 conjugated linoleic acid in milk fat by SO and FA diets increased by 120% and 135%, respectively. In spite of the slight suppression of rumen fermentation by SO diet, negative effects on feed intake and milk production were not detected.  相似文献   
144.
Legumes establish symbiosis with nitrogen-fixing rhizobia through root nodules to acquire nitrogen. Legumes control nodule number through systemic (autoregulation of nodulation) as well as local regulation. Moreover, plants defend themselves against bacteria and other pathogens through the induction of localized (localized acquired resistance) and systemic (SAR, systemic acquired resistance; ISR, induced systemic resistance) responses. Herein, we show that the number of root nodules is suppressed by programmed cell death (PCD), and is simultaneously controlled by SAR and ISR in soybean (Glycine max [L.] Merr.). The wild-type soybean cultivar Williams 82 showed markedly fewer root nodule primordia and PCD symptoms, including accelerated DNA degradation, enhanced generation of reactive oxygen species (visualized by 3,3′-diaminobenzidine staining), and excessive cell death (detected on staining with trypan blue) compared to the hypernodulation mutant NOD1-3. These results suggest that PCD suppresses the formation of root nodules in wild-type soybean. In addition, microarray and gene ontology analyses showed that essential components of hypersensitive response (HR) or disease resistance, such as resistance (R) genes, mitogen-activated protein kinase cascade, SAR, salicylic acid, jasmonic acid, ethylene, etc., were activated in wild-type plants. These analyses corroborate the above findings, demonstrating that the suppression of root nodule formation by PCD is accompanied by HR, and is simultaneously controlled by SAR and ISR in soybean. These findings provide new insight into the control of nodulation to balance nutritional requirements and energy status in legumes.  相似文献   
145.
Nitrous oxide (N2O) is a greenhouse gas that contributes to the destruction of stratospheric ozone, and agricultural soil is an important source of N2O. Aerobic soils are sinks for atmospheric methane (CH4), a greenhouse gas. Ammonia monooxygenase (AMO) can oxidize CH4, but CH4 is mostly oxidized by methane monooxygenase (MMO), and CH4 oxidation by AMO is generally negligible in the soil. We monitored the N2O and CH4 fluxes after urea application in fields containing different soils using an automated sampling system to determine the effects of environmental and microbial factors on the N2O and CH4 fluxes. The soil types were Low-humic Andosol (Gleyic Haplic Andosol), yellow soil (Gleyic Haplic Alisol) and gray lowland soil (Entric Fluvisol). Cumulative N2O emissions from the yellow soil were higher than those from other soil types, although the difference was not significant. The CH4 uptake level by Andosol was one order of magnitude higher than that by other soils. There were significant relationships between the ammonia oxidation potential, AOB and AOA amoA copy numbers, and the CH4 uptake. In contrast, the gene copy numbers of methane-oxidizing bacteria (MOB) pmoA were below the detection limit. Our results suggested that the AMOs of AOB and AOA may have more important roles than those previously considered during CH4 oxidation in agricultural soils treated with N fertilizers.  相似文献   
146.
Abstract

Many vegetable growers in Japan practice a unique waterlogged cultivation method with ample nitrogen (N) supply and microbial supplements, reporting vigorous plant growth, no soilborne diseases, and high yields. We simulated waterlogged soil conditions in greenhouse experiments to examine effects of soil pH and redox potential (Eh) as well as microbial influence on the growth of tomato seedlings. Soil pasteurization enhanced seedling growth whether the acidic, volcanic soil was waterlogged or well-drained. Among various antimicrobials, only soil treatment with polymyxin B improved shoot growth in nonpasteurized soil. The seedlings grew best in pasteurized acidic, waterlogged soil fertilized with ample potassium nitrate (KNO3), which maintained soil Eh above zero. In nonpasteurized soil, growth was severely stunted by raising soil pH progressively to 8.5 while Eh dropped to –194?mV. The results suggested that heat-sensitive Gram-negative soil bacteria and low soil Eh were key factors limiting the growth potential of tomato plants in waterlogged soils.  相似文献   
147.
148.
The utilization of copra meal as a feed ingredient is limited because it contains a high level of mannan. However, recent findings indicate that the effect of copra meal on growth performance in broiler chickens can be improved by the supplementation of mannanase in the diet. In the present study, we examined the effect of mannanase‐hydrolyzed copra meal (MCM) on growth performance and muscle protein metabolism in growing broiler chickens (Gallus gallus domesticus). Forty 8‐day‐old male broiler chicks were assigned to two groups (four birds in each pen, five replicates) and fed either a commercial diet (as a control diet) or a diet containing MCM at 0.2% until 22 days of age. Dietary MCM significantly increased the weights of body, breast muscle, and thighs in chickens, whereas the weights of abdominal adipose tissue and liver were not affected. Cumulative feed intake was significantly increased by MCM. Dietary MCM significantly decreased plasma 3‐methylhistidine level. The messenger RNA and protein levels of muscle protein metabolism‐related factors were not altered by MCM. These findings suggest that the growth‐promoting effect of MCM is related to the suppression of muscle proteolysis in growing broiler chickens.  相似文献   
149.
Puberty is associated with an increase in gonadotropin secretion as a result of an increase in gonadotropin-releasing hormone (GnRH) secretion. Kisspeptin is considered to play a key role in puberty onset in many mammalian species, including rodents, ruminants and primates. The present study aimed to determine if changes in hypothalamic expression of the KISS1 gene, encoding kisspeptin, are associated with the onset of puberty in pigs. The animals (n=4 in each group) were perfused with 4% paraformaldehyde at 0, 1, 2, 3 and 4 months old, as prepubertal stages, and at 5 months old, as the peripubertal stage, following each blood sampling. KISS1 gene expressions in coronal sections of brains were visualized by in situ hybridization. Plasma luteinizing hormone (LH) was measured by radioimmunoassay. KISS1 mRNA signals were observed in the arcuate nucleus (ARC) at all ages examined without any significant difference in the number of KISS1-expressing cells, indicating that the KISS1 gene is constantly expressed in the ARC throughout pubertal development in pigs. The plasma LH concentration was the highest in 0-month-old piglets and significantly decreased in the 1- and 2 month-old groups (P<0.05), suggesting a developing negative feedback mechanism affecting gonadotropin release during the prepubertal period. Considering the potent stimulating effect of kisspeptin on gonadotropin release in prepubertal pigs, kisspeptin secretion rather than kisspeptin synthesis may be responsible for the onset of puberty in pigs.  相似文献   
150.
Puberty in mammals is timed by an increase in gonadotropin-releasing hormone (GnRH) secretion. Previous studies have shown involvement of the two neuropeptides, kisspeptin and neurokinin B (NKB), in controlling puberty onset. Little is known about the role of the other key neuropeptide, dynorphin, in controlling puberty onset, although these three neuropeptides colocalize in the arcuate kisspeptin neurons. The arcuate kisspeptin neuron, which is also referred to as the KNDy neuron, has recently been considered to play a role as an intrinsic source of the GnRH pulse generator. The present study aimed to determine if attenuation of inhibitory dynorphin-kappa-opioid receptor (KOR) signaling triggers the initiation of puberty in normal developing female rats. The present study also determined if stimulatory NKB-neurokinin 3 receptor (NK3R) signaling advances puberty onset. Female Wistar-Imamichi rats were weaned and intraperitoneally implanted with osmotic minipumps filled with nor-binaltorphimine (nor-BNI), a KOR antagonist, or senktide, a NK3R agonist, at 20 days of age. Fourteen days of intraperitoneal infusion of nor-BNI or senktide advanced puberty onset, manifested as vaginal opening and the first vaginal estrus in female rats. Frequent blood sampling showed that nor-BNI significantly increased luteinizing hormone (LH) pulse frequency at 29 days of age compared with vehicle-treated controls. Senktide tended to increase this frequency, but its effect was not statistically significant. The present results suggest that the inhibitory input of dynorphin-KOR signaling plays a role in the prepubertal restraint of GnRH/LH secretion in normal developing female rats and that attenuation of dynorphin-KOR signaling and increase in NKB-NK3R signaling trigger the onset of puberty in female rats.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号