首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   244篇
  免费   10篇
林业   48篇
农学   25篇
基础科学   1篇
  76篇
综合类   29篇
农作物   6篇
水产渔业   8篇
畜牧兽医   41篇
园艺   2篇
植物保护   18篇
  2022年   2篇
  2020年   2篇
  2019年   4篇
  2018年   5篇
  2017年   5篇
  2016年   2篇
  2015年   5篇
  2014年   9篇
  2013年   15篇
  2012年   5篇
  2011年   9篇
  2010年   3篇
  2009年   6篇
  2008年   19篇
  2007年   6篇
  2006年   8篇
  2005年   8篇
  2004年   9篇
  2003年   11篇
  2002年   9篇
  2001年   4篇
  2000年   3篇
  1999年   6篇
  1998年   2篇
  1996年   4篇
  1995年   5篇
  1994年   3篇
  1993年   5篇
  1992年   2篇
  1991年   6篇
  1990年   2篇
  1987年   4篇
  1982年   2篇
  1981年   2篇
  1979年   2篇
  1974年   2篇
  1973年   6篇
  1972年   3篇
  1969年   2篇
  1956年   2篇
  1955年   3篇
  1948年   2篇
  1939年   2篇
  1935年   2篇
  1931年   3篇
  1930年   3篇
  1926年   2篇
  1925年   2篇
  1915年   2篇
  1899年   2篇
排序方式: 共有254条查询结果,搜索用时 15 毫秒
191.
Secondary reactions occurring in pyrite‒containing sediments under aerobic conditions are complex and are not fully understood. Objectives were to (i) study the formation of secondary minerals using x‒ray diffraction (XRD) and ion activity product (IAP) calculations; (ii) to obtain a budget of acidity producing and consuming processes; and (iii) to study the performance of a chemical equilibrium model (including kinetic reactions) using sequential batch experiments with varying input solutions on samples of different pyrite oxidation states. A sediment sample from the open pit coal mine Garzweiler, Germany, was oxidised in the laboratory to obtain four different pyrite oxidation states. Sequential batch experiments were carried out using H2O, 100 mM CaCl2 and 10 mM NaOH as input solutions. A coupled equilibria model was used to describe the experiments. The model (PHREEQC) included inorganic complexation, redox reactions, precipitation/dissolution of sparingly soluble salts, multiple cation exchange and pyrite oxidation using a simple input function. IAP calculations and XRD showed the formation of large amounts of gypsum with increasing pyrite oxidation and for the highly oxidised sample also the formation of hydroniumjarosite. The budget of acidity consuming processes followed the order (i) release of Fe(III) into the solution phase (51% of produced acidity); (ii) Al release into solution and exchangeable phases (probably mainly due to silicate weathering, 22% of produced acidity); and (iii) CEC reducing processes (11% of produced acidity). Modeling of the sequential equilibration experiments with water and CaCl2 gave satisfactory agreements between modeled and measured pH and sorption values, indicating that the main processes governing pH and ion sorption were quite well understood. However, model results of the alkaline additions at larger pyrite oxidation states differed considerably from the experimental results.  相似文献   
192.
European silage maize is cultivated for animal feed and biogas production. We evaluated 210 factorial crosses of elite dent and flint lines in multilocation trials for agronomic and quality traits together with biomass and shoot concentrations of 10 elements in juvenile plants. Significant genotypic variances, mainly due to general combining ability variance of the dent lines, and high heritabilities were observed for dry matter yield (DMY) and quality traits. DMY was not correlated with quality traits, but methane fermentation yield (MFY) and metabolizable energy content (MEC) showed significant correlations with starch and fibre content. Concentrations of elements N,P,S,K were positively correlated with each other but only in few cases correlated with DMY and quality traits. Parent lines with contrasting P concentrations differed in root morphology traits. Results support DMY as primary trait for selection of silage maize hybrids, but MFY is of negligible importance in breeding for biogas contrary to MEC for animal feed. Neither biomass nor elemental composition of juvenile plants were of predictive value for final DMY or quality traits.  相似文献   
193.
194.
195.
196.

Background, aim, and scope

The rapid growth of the world’s population over the past few decades has led to a concentration of people, buildings, and infrastructure in urban areas. The tendency of urban areas to develop in sedimentary valleys has increased their vulnerability to earthquakes due to the presence of soft soil and sediment. Several earthquakes have clearly demonstrated that local soil and sediment conditions can have a significant influence on earthquake-induced ground motion and damage pattern, respectively. Many studies confirm the relationship between site effect and ground motion (Borcherdt in Bull Seismol Soc Am 60:29–61, 1970; Bouckovalas et al. in Geotech Geolog Eng (Historical Archive) 14(2):111–128, 1996; Fäh et al. in Seismology 1:87–10, 1997; Atakan et al. in Nat Hazards 15(2–3):139–164, 1997; Christaras et al. in Geodynamics 26(2–4):393–411, 1998; Raptakis et al. in Bull Earthquake Eng 2(3):285–301, 2004a; Raptakis et al. in Soil Dyn Earthq Eng 25:871–887, 2005; Marka et al. in Pure Appl Geophys 158:2349–2367, 2001; Marka et al. in Soil Dyn Earthq Eng 25(4):303–315, 2005; Importa et al. in Seismology 9(2):191–210, 2005; Tyagunov et al. in Nat Hazards 38:199–214, 2006; Lombardo et al. in Nat Hazards 38:339–354, 2006; Rayhani et al. in Geotech Geol Eng 21(1):91–100, 2008). In order to classify the suitability of the soil and subsurface sediment units for urban planning and compare their mechanical behavior with the non-uniform damage observed in the 2003 earthquake, we performed some geotechnical and geophysical analyses of soil and sediment samples collected from different locations in Bam City.

Methodology

Geophysical and geotechnical properties, such as grain size distribution, sorting, plasticity, Poison’s ratio, shear strength, compression index, permeability, and P and S wave velocities in soil and subsurface sediments, were measured. Maps (in GIS environment) and cross-sections were prepared for the study area.

Results

According to our observations, a great number of buildings were damaged in areas of the city where silty and clayey soils dominate, presenting very low permeability, low wave velocity together with high plasticity, and compressibility. In the study area, we recognized eight sediment types. Shear wave propagation velocities allowed for the identification of four seismic layers referred to as the surface layer, second layer, and third layer and seismic bedrock. We found that the damages observed in the Bam area were related to the physical and mechanical properties of the soil and subsurface sediment units. We also found that the soil thickness that was estimated by geophysical surveying shows a direct relationship with damage rate observations. Furthermore, we observed that landslide and qanat collapses have occurred in some areas where sand and silty sand soils and subsurface sediments dominate.

Discussion

The distribution of the damage shows a microzonation that is very serious in some points in the city along the main fault, especially where it is located on thick, fine, medium, and loose soil and sediments. In general, there is a discernable west to east increase in the damage across the city. The average level of destruction for the entire city was ~75%, while the eastern part of the city locally reached 100% destruction level. The major factors that influenced the damage and destruction in the Bam region were the distance of a given site from the seismic source, the quality of foundation soil and subsurface sediment, and the type of building. The Bam earthquake occurred on a single fault network comprising the Bam and Arg-e-Bam faults (Funning et al. in J Geophys Res 100(B09406):1–23, 2005). The sediments and soil of the area (unconsolidated silty sand and sandy gravel) belong to braided fluvial and alluvial facies. Most of the buildings near the epicenter area were old and constructed of mud bricks using mud cement.

Recommendations and perspectives

A combined sedimentological, geological, neotectonic, geotechnical, paleoseismological, and geophysical investigation in urban areas (especially in alluvial valleys) will give the detailed knowledge of the subsurface structure required for the accurate and precise seismic hazard assessments needed for effective earthquake protection planning. This paper shows that for the Bam situation, sedimentological data are required to provide an interpretive context for the geophysical data.  相似文献   
197.
We measured the elemental compositions of material from 23 particles in aerogel and from residue in seven craters in aluminum foil that was collected during passage of the Stardust spacecraft through the coma of comet 81P/Wild 2. These particles are chemically heterogeneous at the largest size scale analyzed ( approximately 180 ng). The mean elemental composition of this Wild 2 material is consistent with the CI meteorite composition, which is thought to represent the bulk composition of the solar system, for the elements Mg, Si, Mn, Fe, and Ni to 35%, and for Ca and Ti to 60%. The elements Cu, Zn, and Ga appear enriched in this Wild 2 material, which suggests that the CI meteorites may not represent the solar system composition for these moderately volatile minor elements.  相似文献   
198.
Forest soils differ significantly from the arable land in their distribution of the soil bulk density and humus content, but the water retention parameters are primarily derived from the data of agricultural soils. Thus, there is a need to relate physical parameters of forest soils with their water retention characteristics and compare them with those of agricultural soils. Using 1850 water retention curves from forest soils, we related the following soil physical parameters to soil texture, bulk density, and C content: air capacity (AC), available water capacity (AWC), and the permanent wilting point (PWP). The ACs of forest soils were significantly higher than those of agricultural soils which were related to the low bulk densities of the forest soils, whereas differences in AWCs were small. Therefore, for a proper evaluation of the water retention curves (WRCs) and the parameters derived from them, further subdivisions of the lowest (< 1.45 g cm‐3) of the three bulk density classes was undertaken to the wide range of low soil densities in forest soils (giving a total of 5 bulk density classes). In Germany, 31 soil texture classes are used for the estimation of soil physical parameters. Such a detailed classification is not required because of insignificant differences in WRCs for a large number of these classes. Based on cluster analysis of AC, AWC, and PWP parameters, 10 texture collectives were obtained. Using 5 classes of bulk densities, we further calculated the ACs, AWCs, and the PWPs for these 10 classes. Furthermore, “van Genuchten parameters” (θ r, θ s, α, and n) were derived which described the average WRC for each designated class. In a second approach using multiple regression analysis, regression functions for AC, AWC, and PWP and for the van Genuchten parameter were calculated.  相似文献   
199.
The primary aims of the present investigation were to determine the proportion of microbial driven soil processes associated with acidification in coniferous forest soils, and the response of microbial communities with respect to soil acidification and to acidification processes. Lysimeters containing undisturbed soil columns from five forest sites in Europe were installed in a spruce forest in the Soiling (northern Germany) and exposed to the same input and climatic conditions. In the present study root uptake was excluded. Under these conditions, during the 21 months of the experiment, acid load by microbial N-transformations especially mineralization and subsequent nitrification were the most important processes ranging from 50.2% to 79.1%. Except for one soil the balances showed, that increasing levels of soil acidity decreased the potential of mineralization. This agreed with the observation that microbial biomass Cmic decreased. The biomass Cmic (kg ha?1 a?1) was significantly correlated to N-output. The caloric quotient qW increased parallel to decreasing pH. During the experiment the PH in all mineral soil horizons decreased significantly. This change in soil chemical conditions did not affect the microbial biomass Cmic but the caloric quotient increased during the experiment, especially in the upper mineral soil.  相似文献   
200.
Microbial heat production is a nonspecific measure for microbial activity irrespective of O2 availability in soils. In a series of long-term batch microcalorimeter experiments with closed ampoules, we examined the microbial activity in glucose-amended soil aggregates from different soil depths of a clay forest soil during the transition from aerobic to anaerobic conditions. Furthermore, the influence of the soil aggregate size on the long-term metabolic heat production was examined. Heat output curves showed a distinct pattern for soil samples from different soil depths and aggregate sizes and led to the following conclusions: 1. Microbial biomass and microbial activity strongly decreased with increasing soil depth as well as increasing soil aggregate size despite relatively constant organic C concentrations. 2. The transition from aerobic to anaerobic conditions led to a considerable drop in microbial activity. However, based on the energy balance, 10-26% of the heat production during the aerobic phase is attributable to anoxic or partly anoxic metabolism. 3. After O2 exhaustion, a lag phase of low but constant heat output was observed, followed by a peak of anaerobic metabolic activity. Heat production during the lag phase was hypothesised to be an indicator for the biomass of facultatively anaerobic microorganisms in the soil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号