首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  免费   18篇
林业   18篇
农学   4篇
  39篇
综合类   17篇
农作物   15篇
水产渔业   9篇
畜牧兽医   88篇
园艺   7篇
植物保护   21篇
  2023年   2篇
  2022年   5篇
  2021年   1篇
  2020年   6篇
  2019年   4篇
  2018年   12篇
  2017年   4篇
  2016年   6篇
  2015年   8篇
  2014年   11篇
  2013年   13篇
  2012年   23篇
  2011年   11篇
  2010年   9篇
  2009年   7篇
  2008年   17篇
  2007年   9篇
  2006年   14篇
  2005年   4篇
  2004年   10篇
  2003年   4篇
  2002年   7篇
  2001年   1篇
  2000年   1篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1993年   1篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1975年   1篇
  1971年   1篇
  1931年   1篇
排序方式: 共有218条查询结果,搜索用时 15 毫秒
31.
Marine fungi are known to produce structurally unique secondary metabolites, and more than 1000 marine fungal-derived metabolites have already been reported. Despite the absence of marine fungal-derived metabolites in the current clinical pipeline, dozens of them have been classified as potential chemotherapy candidates because of their anticancer activity. Over the last decade, several comprehensive reviews have covered the potential anticancer activity of marine fungal-derived metabolites. However, these reviews consider the term “cytotoxicity” to be synonymous with “anticancer agent”, which is not actually true. Indeed, a cytotoxic compound is by definition a poisonous compound. To become a potential anticancer agent, a cytotoxic compound must at least display (i) selectivity between normal and cancer cells (ii) activity against multidrug-resistant (MDR) cancer cells; and (iii) a preferentially non-apoptotic cell death mechanism, as it is now well known that a high proportion of cancer cells that resist chemotherapy are in fact apoptosis-resistant cancer cells against which pro-apoptotic drugs have more than limited efficacy. The present review thus focuses on the cytotoxic marine fungal-derived metabolites whose ability to kill cancer cells has been reported in the literature. Particular attention is paid to the compounds that kill cancer cells through non-apoptotic cell death mechanisms.  相似文献   
32.
The first chemical study of the Indo-Pacific dorid nudibranch Aldisa andersoni resulted in the isolation of five chlorinated phenyl-pyrrolyloxazoles belonging to the phorbazole series. Two new molecules, 9-chloro-phorbazole D and N1-methyl-phorbazole A, co-occurring with known phorbazoles A, B and D, have been characterized. Phorbazoles were found to be present mainly in the external part of the mollusc. The structures of the new compounds were determined by interpretation of spectroscopic data, mainly NMR and mass spectrometry and by comparison with the literature data. Evaluation of feeding-deterrence activity as well as in vitro growth inhibitory properties in human cancer cells was also carried out.  相似文献   
33.
Cheung FW  Guo J  Ling YH  Che CT  Liu WK 《Marine drugs》2012,10(2):465-476
Geoditin A, an isomalabaricane triterpene isolated from marine sponge Geodia japonica, has been demonstrated to induce apoptosis in leukemia HL60 cells and human colon HT29 cancer cells through an oxidative stress, a process also interfering with normal melanogenesis in pigment cells. Treatment of murine melanoma B16 cells with geoditin A decreased expression of melanogenic proteins and cell melanogenesis which was aggravated with adenylate cyclase inhibitor SQ22536, indicating melanogenic inhibition was mediated through a cAMP-dependent signaling pathway. Immunofluorescence microscopy and glycosylation studies revealed abnormal glycosylation patterns of melanogenic proteins (tyrosinase and tyrosinase-related protein 1), and a co-localization of tyrosinase with calnexin (CNX) and lysosome-associated membrane protein 1 (LAMP-1), implicating a post-translational modification in the ER and a degradation of tyrosinase in the lysosome. Taken together, potent anti-melanogenic property and the relatively low cytotoxicity of geoditin A have demonstrated its therapeutic potential as a skin lightening agent.  相似文献   
34.
Geoditin A, an isomalabaricane triterpene isolated from the marine sponge Geodia japonica, has been demonstrated to dissipate mitochondrial membrane potential, activate caspase 3, decrease cytoplasmic proliferating cell nuclear antigen (PCNA), and induce apoptosis of leukemia cells, but the underlying mechanism remains unclear [1]. In this study, we found fragmentation of Golgi structure, suppression of transferrin receptor expression, production of oxidants, and DNA fragmentation in human colon cancer HT29 cells after treatment with geoditin A for 24 h. This apoptosis was not abrogated by chelation of intracellular iron with salicylaldehyde isonicotinoyl hydrazone (SIH), but suppressed by N-acetylcysteine (NAC), a thiol antioxidant and GSH precursor, indicating that the cytotoxic effect of geoditin A is likely mediated by a NAC-inhibitable oxidative stress. Our results provide a better understanding of the apoptotic properties and chemotherapeutical potential of this marine triterpene.  相似文献   
35.
The aim of this experiment was to evaluate the significance of neonatal environment on feed efficiency. For that purpose, rabbits from a line selected for residual feed intake (RFI) during 10 generations (G10 kits) were cross‐fostered with non‐selected control does (i.e., G0 line), and reciprocally. In parallel, sibs were fostered by mothers from their original line. Nine hundred animals were raised in individual (N = 456) or collective (N = 320) cages. Traits analysed in this study were body weight at 32 days and at 63 days, average daily gain (ADG), feed intake between weaning and 63 days (FI), feed conversion ratio (FCR) and RFI. The maternal environment offered by does from the line selected for RFI deteriorated the FCR of the kits, independently of their line of origin, during fattening (+0.08 ± 0.02) compared to FCR of kits nursed by G0 does. The line, the type of housing and the batch were significant effects for all the measured traits: G10 kits were lighter than their G0 counterparts at 32 days (?82.9 ± 9 g, p < 0.0001) and at 63 days (?161 ± 16 g, p < 0.0001). They also had a lower ADG (?2.36 ± 0.36 g/day, p < 0.0001), RFI (?521 ± 24 g/day, p < 0.0001) and a lower FI (?855 ± 31 g, p < 0.0001), resulting in a more desirable feed efficiency (FCR: ?0.35 ± 0.02). There was no significant difference in the contrast of G10 and G0 performances between collective and individual/digestive cages (p > 0.22): ?2.35 g/day versus 2.94 g/day for ADG, ?0.39 versus ?0.40 for FCR, ?577 g versus ?565 g for RFI and ?879 g versus ?859 g for FI, respectively). Thus, no genotype‐by‐environment (housing) interaction is expected at the commercial level, that is, no re‐ranking of the animals due to collective housing.  相似文献   
36.
37.
38.
Two major proteins, Mcf-A67 and Mcf-B66, were identified by mini two-dimensional polyacrylamide gel electrophoresis in order to distinguish the two European quarantine root-knot nematodes, Meloidogyne chitwoodi and M. fallax, from eight other species. These quarantine proteinic markers have been microsequenced after enzymatic digestion. The internal amino acid sequences exhibit similarities to members of a family of low molecular weight intracellular lipid-binding proteins. Moreover, to explore a simple, rapid, and inexpensive way to identify the two quarantine nematodes, dot blot hybridizations were performed using an antiserum (A67) produced from the longest amino-acid sequence of the protein Mcf-A67. Although several proteins stained on the M. chitwoodi and M. fallax western blot membranes, the two nematodes were easily distinguished from other root-knot nematodes, on dot blot assays with soluble proteins extracted from a single female. Because of its specificity and sensitivity, the use of the A67 antiserum to improve the diagnosis of the two European quarantine root-knot nematodes is discussed.  相似文献   
39.
40.
The present study aimed to determine the most efficient experimental conditions of iron sulfate use leading to optimal inhibition in the development of fungal pathogens. Assays have been focused on fungal species inducing severe grapevine diseases. FeSO4 directly inhibited the in vitro mycelial growth of Botrytis cinerea, Eutypa lata, Phaeomoniella chlamydospora, Phaeoacremonium aleophilum, Diplodia seriata, and Neofusicoccum parvum with variable efficiency in the range of 0.5–10 mM. The development was always completely inhibited at 20 mM. This inhibitory effect was greatly increased at acidic pH values. The anionic moiety of the molecule was of importance since bromide, chloride and sulfate were highly active, whereas acetate and oxalate showed a small effect. Electron microscope observations on E. lata and B. cinerea showed that a treatment with FeSO4 induced dramatic changes in the hyphal organization leading to cell death. No toxicity was observed on grapevine leaves following repeated FeSO4 sprays in the antifungal concentration range. Therefore, FeSO4 may be proposed to effectively replace the long-term pollutant use of CuSO4 as an antifungal agent, with the additional advantage of iron being an important plant micronutrient.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号