首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59067篇
  免费   3378篇
  国内免费   36篇
林业   3386篇
农学   1858篇
基础科学   267篇
  8014篇
综合类   10374篇
农作物   2364篇
水产渔业   3172篇
畜牧兽医   28490篇
园艺   687篇
植物保护   3869篇
  2021年   520篇
  2020年   502篇
  2019年   581篇
  2018年   1141篇
  2017年   1215篇
  2016年   1101篇
  2015年   961篇
  2014年   1146篇
  2013年   2307篇
  2012年   2112篇
  2011年   2235篇
  2010年   1412篇
  2009年   1419篇
  2008年   2092篇
  2007年   2111篇
  2006年   1912篇
  2005年   1820篇
  2004年   1705篇
  2003年   1626篇
  2002年   1507篇
  2001年   1689篇
  2000年   1631篇
  1999年   1348篇
  1998年   482篇
  1997年   512篇
  1996年   493篇
  1995年   542篇
  1994年   483篇
  1993年   495篇
  1992年   972篇
  1991年   955篇
  1990年   949篇
  1989年   959篇
  1988年   896篇
  1987年   937篇
  1986年   928篇
  1985年   937篇
  1984年   755篇
  1983年   682篇
  1979年   682篇
  1978年   570篇
  1977年   484篇
  1975年   510篇
  1974年   719篇
  1973年   650篇
  1972年   705篇
  1971年   696篇
  1970年   603篇
  1969年   602篇
  1967年   515篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Supercritical fluid carbon dioxide extraction (SFE) has been evaluated for the extraction of 17 organohalogen and organophosphate pesticides in gazpacho (a table-ready food composite containing crude vegetables, white bread, vegetable oil, water, and other minor components) using anhydrous magnesium sulfate as drying agent. The effects of different parameters, such as fat content in gazpacho composites, magnesium sulfate/gazpacho ratio, supercritical fluid volume, pressure, temperature, and static modifier additions, on SFE recoveries from spiked gazpacho samples have been studied. Analyses were performed by gas chromatography (GC) with flame photometric (FPD), electron capture (ECD), and mass spectrometry (MSD) detectors. In most experiments, recoveries obtained for the nonpolar organohalogen pesticides were lower than those obtained for the most polar organophosphate pesticides, but overall pesticide recoveries determined by using the optimal SFE conditions indicate that SFE could be used to determine pesticide residue levels in gazpacho.  相似文献   
992.
In order to understand the efficiency of residue-N use and to estimate the minimum input required to obtain a reasonable level of crop response, it is important to quantify the fate of the applied organic-N. The recovery of N from 15N-labelled Crotalaria juncea was followed in the soil and the succeeding maize crop. Apparent N recovery (ANR) by maize from unlabelled Crotalaria juncea, Crotalaria retusa, Calopogonium mucunoides, Mucuna pruriens and mineral fertilizer at three locations were also evaluated. The maize crop recovered 4.7% and 7.3% of the 15N-labelled C. juncea-N at 42 days after sowing (DAS) and at final harvest, respectively. The corresponding 15N recovery from the soil was 92.4% and 58.5%. The highest mean ANR of 57.4% was with mineral fertilizer, whereas the mean ANR of 14.3% from C. retusa was the lowest. A large pool substitution and added-N interaction effect was observed when comparing N recovery from the labelled and unlabelled C. juncea. The amount of residue-N accounted for by the isotope dilution method at 42 DAS was 97.1% and at final harvest 65.8%. The large residue-N recovery in the soil organic-N pool explains the residual effect usually observed with organic residue application.  相似文献   
993.
Previously, there has not been any in situ conservation sites for crop germplasm within the United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Plant Germplasm System (NPGS). Using morphologic and molecular (SSR markers) techniques, we assessed the genetic variation present in populations of rock grape (Vitis rupestris Scheele), a native American grape species, throughout its range. We identified seven in situ conservation sites for rock grape using a strategy based on morphologic and molecular data, taxonomic information, population size and integrity, and landholder commitment. In collaboration with federal and state landholding agencies, we have established the first NPGS in situ conservation sites for American wild relatives of a crop.  相似文献   
994.
Chlorophyll in soybean represents a downgrading factor for the crops. Five Brazilian cultivars were harvested between R(6) and R(8) stage of development (Fehr & Caviness scale) and dried at 25 degrees and 40 degrees C. The effect of maturity stages and two drying conditions after harvest were studied to achieve reduction of moisture and chlorophylls to acceptable levels. When seeds were dried at 25 degrees C, even harvesting at early stages of development such as R(6), the green pigments were almost degraded, and 16 ppm of chlorophyll were found at maximum, accompanied by loss of moisture. Moisture and chlorophyll declines as seed matures, but at intermediary stages (R(6)-R(7)), chlorophyll degrades first, so the rate of moisture loss should not be used to predict chlorophyll contents. At 40 degrees C, complete degradation of chlorophyll pigments is only achieved when seeds are swathed from R(7) stage up, otherwise the seed quality could be compromised. Slow drying allows almost complete removal of green pigments, even when seeds are swathed a few days before the physiological maturity stage.  相似文献   
995.
Crop responses to annual compaction treatments (applied to whole plots) and management treatments to ameliorate compacted soil were determined in a field experiment on a Vertisol. Initially, all treatments except a control were compacted with a 10 Mg axle load on wet soil (26% gravimetric water content compared with a plastic limit of 22%). Annually applied axle loads of 10 and 6 Mg on wet soil (25–32% soil water) tended to reduce seedling emergence, grain yield (wheat, sorghum and maize), soil water storage and crop water use efficiency (WUE). Annual applications of an axle load of 6 Mg on dry soil (<22% soil water) had little effect on crop performance. Mean reductions in the yield of five crops (three wheat, one sorghum and one maize) in comparison with the uncompacted control were 23% or 0.79 Mg ha−1 (10 Mg on wet soil), 13% or 0.44 Mg ha−1 (6 Mg on wet soil) and 1% or 0.03 Mg ha−1 (6 Mg on dry soil). Maize grown in the fifth year of treatment application was most affected by compaction of wet soil, its WUE being reduced from 14.3 to 9.7 kg ha−1 mm−1 in response to an axle load of 10 Mg. Reduced WUE was associated with delayed soil water extraction at depth. A 3-year pasture ley was the most successful amelioration treatment. A wheat and a maize crop grown after the ley outyielded the control by 0.33 and 0.90 Mg ha−1, respectively. So the pasture not only ameliorated the initial compaction damage, with respect to crop performance, but resulted in improvements in two subsequent crops.  相似文献   
996.
997.
Quantifying how tillage systems affect soil microbial biomass and nutrient cycling by manipulating crop residue placement is important for understanding how production systems can be managed to sustain long-term soil productivity. Our objective was to characterize soil microbial biomass, potential N mineralization and nutrient distribution in soils (Vertisols, Andisols, and Alfisols) under rain-fed corn (Zea mays L.) production from four mid-term (6 years) tillage experiments located in central-western, Mexico. Treatments were three tillage systems: conventional tillage (CT), minimum tillage (MT) and no tillage (NT). Soil was collected at four locations (Casas Blancas, Morelia, Apatzingán and Tepatitlán) before corn planting, at depths of 0–50, 50–100 and 100–150 mm. Conservation tillage treatments (MT and NT) significantly increased crop residue accumulation on the soil surface. Soil organic C, microbial biomass C and N, potential N mineralization, total N, and extractable P were highest in the surface layer of NT and decreased with depth. Soil organic C, microbial biomass C and N, total N and extractable P of plowed soil were generally more evenly distributed throughout the 0–150 mm depth. Potential N mineralization was closely associated with organic C and microbial biomass. Higher levels of soil organic C, microbial biomass C and N, potential N mineralization, total N, and extractable P were directly related to surface accumulation of crop residues promoted by conservation tillage management. Quality and productivity of soils could be maintained or improved with the use of conservation tillage.  相似文献   
998.
This work has focused on discriminating extra virgin olive oils from Sabina (Lazio, Italy) by olive fruit variety (cultivar). A set of oils from five of the most widespread cultivars (Carboncella, Frantoio, Leccino, Moraiolo, and Pendolino) in this geographical area was analyzed for chemical composition using only the Official Analytical Methods, recognized for the quality control and commercial classification of this product. The obtained data set was converted into a computer-compatible format, and principal component analysis (PCA) and a method based on the Fisher F ratio were used to reduce the number of variables without a significant loss of chemical information. Then, to differentiate these samples, two supervised chemometric procedures were applied to process the experimental data: linear discriminant analysis (LDA) and artificial neural network (ANN) using the back-propagation algorithm. It was found that both of these techniques were able to generalize and correctly predict all of the samples in the test set. However, these results were obtained using 10 variables for LDA and 6 (the major fatty acid percentages, determined by a single gas chromatogram) for ANN, which, in this case, appears to provide a better prediction ability and a simpler chemical analysis. Finally, it is pointed out that, to achieve the correct authentication of all samples, the selected training set must be representative of the whole data set.  相似文献   
999.
1000.
Marigold flowers are the most important source of carotenoids for application in the food industry. However, the extraction gives almost 50% losses of the carotenoids depending on conditions for silaging, drying, and solvent extraction. In the past decades, macerating enzymes have been successfully applied to improve the extraction yield of valued compounds from natural products. In this work, an alternative extraction process for carotenoids is proposed, consisting of a simultaneous enzymatic treatment and solvent extraction. The proposed process employs milled fresh flowers directly as raw material, eliminating the inefficient silage and drying operations as well as the generation of hard to deal with aqueous effluents present in traditional processes. The process developed was tested at the 80 L scale, where under optimal conditions a carotenoid recovery yield of 97% was obtained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号