首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   8篇
  5篇
综合类   5篇
农作物   4篇
畜牧兽医   42篇
植物保护   44篇
  2018年   1篇
  2017年   4篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   10篇
  2007年   5篇
  2006年   8篇
  2005年   1篇
  2004年   6篇
  2003年   2篇
  2002年   5篇
  2001年   3篇
  2000年   3篇
  1999年   10篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1993年   4篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
排序方式: 共有100条查询结果,搜索用时 15 毫秒
81.
Mechanisms involved in the biological suppression of infection and inoculum potential ofBotrytis cinerea are numerous and variable and the involvement of two or more mechanisms has been demonstrated in several systems. Reported combinations include antibiosis with enzyme degradation ofB. cinerea cell walls; competition for nutrients followed by interference with pathogenicity enzymes of the pathogen or with induced resistance; and alteration of plant surface wettability combined with antibiosis. Since germinatingB. cinerea conidia are dependent on the presence of nutrients, competition for nutrients is regarded as important in systems where biocontrol is involved. Conidial viability and germination capacity are also potentially affected by the presence of antibiotics produced by biocontrol agents and present in the phyllosphere. Slower in action are mechanisms involving induced resistance in the host plant and production of hydrolytic enzymes that degradeB. cinerea cell walls. The latter has been demonstrated much more convincinglyin vitro than in the phyllosphere. Biocontrol in established lesions and reduction of sporulation on necrotic plant tissues is a means to minimize the pathogen inoculum.Abbreviations BCA bio-control agent - Bc Botrytis cinerea - PG polygalacturonase - PL Pectin lyase - PME Pectin methyl esterase - PR pathogenesis related - VPD vapour pressure deficit  相似文献   
82.
ABSTRACT A strategy for integrated biological and chemical control of Botrytis cinerea in nonheated greenhouse vegetables was developed. The biocontrol agent used was a commercial preparation developed from an isolate of Trichoderma harzianum, T39 (Trichodex). Decisions concerning whether to spray the biocontrol agent or a fungicide were made based on a weather-based disease warning system. The integrated strategy (BOTMAN [short for Botrytis manager]) was implemented as follows: when slow or no disease progress was expected, no spraying was needed; when an outbreak of epidemics was expected, use of a chemical fungicide was recommended; in all other cases, application of T. harzianum T39 was recommended. Future weather information (a 4-day weather forecast provided by the Israel Weather Forecast Service) was more useful for disease warnings than immediate past weather. The integrated strategy was compared with weekly applications of fungicide in 11 experiments conducted over 3 years in greenhouse-grown tomato and cucumber. Disease reduction in the integrated strategy (63.9 +/- 3.0%) did not differ significantly (P < 0.05) from the fungicide-only treatment (70.1 +/- 3.6%). The number of fungicide sprays in the integrated strategy ranged from 2 to 7 (mean 4.2) compared to 7 to 13 (mean 10.5) in the fungicide treatment. The integrated strategy averaged 5.9 sprays of T. harzianum T39. For the integrated strategy, one treatment omitted use of T. harzianum T39 to estimate the contribution of this agent to disease control. Disease reduction in that treatment (49.1 +/- 4.8%) was significantly (P < 0.05) inferior to the combined chemical and biological strategy, indicating that the T. harzianum T39 sprays had a measurable effect on disease control.  相似文献   
83.
Biocontrol of Botrytis cinerea with Trichoderma spp. is generally believed to result from direct interaction of the biocontrol agent with the pathogen or from a Trichoderma-induced change in environmental conditions that affects B. cinerea development. In this work we provide arguments for the participation of induced plant defence in T. harzianum T39 control of B. cinerea. In tomato, lettuce, pepper, bean and tobacco, T. harzianum T39 application at sites spatially separated from the B. cinerea inoculation resulted in a 25–100%percnt; reduction of grey mould symptoms, caused by a delay or suppression of spreading lesion formation. Given the spatial separation of both micro-organisms, this effect was attributed to the induction of systemic resistance by T. harzianum T39. The observation that in bean the effect of T. harzianum T39 was similar to that of the rhizobacterium Pseudomonas aeruginosa KMPCH, a reference strain for the induction of systemic resistance, confirmed this hypothesis. Since B. cinerea control on tobacco leaves sprayed with T. harzianum T39 was similar to the control on leaves from T. harzianum T39 soil-treated plants, induction of plant defence might also participate in biocontrol on treated leaves.  相似文献   
84.
Y. Elad 《Crop Protection》2000,19(8-10):709-714
Biocontrol of foliar diseases is an alternative means of management of foliar pathogens. One of the most studied commercial biocontrol agents is isolate T39 of Trichoderma harzianum which can be regarded as a model to demonstrate biocontrol under commercial conditions and the mechanisms involved. This biocontrol agent (BCA) controls the foliar pathogens, Botrytis cinerea, Pseuperonospora cubensis, Sclerotinia sclerotiorum and Sphaerotheca fusca (syn. S. fuliginea) in cucumber under commercial greenhouse conditions. Control efficacy was similar for three different rates (covering a fourfold range). Involvement of locally and systemically induced resistance has been demonstrated. Cells of the BCA applied to the roots, and dead cells applied to the leaves of cucumber plants induced control of powdery mildew. The BCA suppressed enzymes of B. cinerea, such as pectinases, cutinase, glucanase and chitinase, through the action of protease secreted on plant surfaces. A combination of several modes of action is responsible for biocontrol. However, biocontrol is not achieved by means of antibiotics or by mycoparasitism, in spite of the fact that BCA has the potential to degrade cell-wall polymers, such as chitin.  相似文献   
85.
Magnetic resonance imaging (MRI) can elucidate the interior structure of an optically opaque object in unparalleled detail but is ultimately limited by the need to enclose the object within a detection coil; acquiring the image with increasingly smaller pixels reduces the sensitivity, because each pixel occupies a proportionately smaller fraction of the detector's volume. We developed a technique that overcomes this limitation by means of remotely detected MRI. Images of fluids flowing in channel assemblies are encoded into the phase and intensity of the constituent molecules' nuclear magnetic resonance signals and then decoded by a volume-matched detector after the fluids flow out of the sample. In combination with compressive sampling, we thus obtain microscopic images of flow and velocity distributions ~10(6) times faster than is possible with conventional MRI on this hardware. Our results illustrate the facile integration of MRI with microfluidic assays and suggest generalizations to other systems involving microscopic flow.  相似文献   
86.
Oidium neolycopersici causes severe powdery mildew on all aerial parts of tomato, excluding the fruit. The objective of the present work was to examine factors that influence the development of O. neolycopersici on tomato and to identify potential methods for managing tomato powdery mildew. Under controlled conditions, the highest rates of conidial germination were observed at 25 degrees C, 99% relative humidity (RH) and minimal light, and the lowest on leaves adjacent to fruits. Optimal conditions for appressoria formation were 25 degrees C, RH ranging from 33 to 99%, and 1,750 lux light intensity. More conidia were formed at 20 degrees C, 70 to 85% RH, and 5,150 lux light intensity than at 16 and 26 degrees C, 99% RH, and 480 to 1,750 lux, respectively. Conidia survived and remained capable of germination for over four months when initially incubated at lower temperatures and higher RH, as compared with their fast decline under more extreme summer shade conditions. In growth chamber experiments, disease did not develop at 28 degrees C. Within the range of 70 to 99% RH, disease was less severe under the higher RH than the drier conditions. Disease was also less severe at lower light intensities. Data collected in three commercial-like greenhouse experiments involving various climate regimes were used to draw correlations regarding the effects of temperature and RH on the development of epidemics. Severity of powdery mildew was positively correlated with the duration of the range 15 to 25 degrees C, 1 to 4 weeks before disease evaluation (BDE), RH levels of 60 to 90% at 2 to 4 weeks BDE, and RH of 50 to 60% during the week BDE. Conversely, disease was negatively correlated with the duration of temperatures in the low and high ranges (5 to 15 degrees C and 35 to 40 degrees C) at 1 to 4 weeks BDE, with the duration of RH levels of 40% and below at 1 to 4 weeks BDE, and with 50 to 60% RH during the third week BDE. High (90 to 100%) RH was also negatively correlated with disease severity. These results suggest that the combination of high temperatures and low RH may help reduce O. neolycopersici powdery mildew severity in greenhouse tomatoes.  相似文献   
87.
Botrytis cinerea is a non-specific, necrotrophic pathogen that attacks many plant species, including Arabidopsis and tomato. Since senescing leaves are particularly susceptible to infection by B. cinerea, we hypothesized that the fungus might induce senescence as part of its mode of action and that delaying leaf senescence might reduce the severity of B. cinerea infections. To examine these hypotheses, we followed the expression of Arabidopsis SAG12, a senescence-specific gene, upon infection with B. cinerea. Expression of SAG12 is induced by B. cinerea infection, indicating that B. cinerea induces senescence. The promoter of SAG12, as well as that of a second Arabidopsis senescence-associated gene, SAG13, whose expression is not specific to senescence, were previously analyzed in tomato plants and were found to be expressed in a similar manner in the two species. These promoters were previously used in tomato plants to drive the expression of isopentenyl transferase (IPT) from Agrobacterium to suppress leaf senescence (Swartzberg et al. in Plant Biology 8:579–586, 2006). In this study, we examined the expression of these promoters following infection of tomato plants with B. cinerea. Both promoters exhibit high expression levels upon B. cinerea infection of non-senescing leaves of tomato plants, supporting our conclusion that B. cinerea induces senescence as part of its mode of action. In contrast to B. cinerea, Trichoderma harzianum T39, a saprophytic fungus that is used as a biocontrol agent against B. cinerea, induces expression of SAG13 only. Expression of IPT, under the control of the SAG12 and SAG13 promoters in response to infection with B. cinerea resulted in suppression of B. cinerea-induced disease symptoms, substantiating our prediction that delaying leaf senescence might reduce susceptibility to B. cinerea. Contribution from the Agriculture Research Organization, The Volcani Center, Bet Dagan, Israel, No. 127/2006 series.  相似文献   
88.
Automation of disease detection and monitoring can facilitate targeted and timely disease control, which can lead to increased yield, improved crop quality and reduction in the quantity of applied pesticides. Further advantages are reduced production costs, reduced exposure to pesticides for farm workers and inspectors and increased sustainability. Symptoms are unique for each disease and crop, and each plant may suffer from multiple threats. Thus, a dedicated integrated disease-detection system and algorithms are required. The development of such a robotic detection system for two major threats of bell pepper plants: powdery mildew (PM) and Tomato spotted wilt virus (TSWV), is presented. Detection algorithms were developed based on principal component analysis using RGB and multispectral NIR-R-G sensors. High accuracy was obtained for pixel classification as diseased or healthy, for both diseases, using RGB imagery (PM: 95%, TSWV: 90%). NIR-R-G multispectral imagery yielded low classification accuracy (PM: 80%, TSWV: 61%). Accordingly, the final sensing apparatus was composed of a RGB sensor and a single-laser-beam distance sensor. A relatively fast cycle time (average 26.7 s per plant) operation cycle for detection of the two diseases was developed and tested. The cycle time was mainly influenced by sub-tasks requiring motion of the manipulator. Among these tasks, the most demanding were the determination of the required detection position and orientation. The time for task completion may be reduced by increasing the robotic work volume and by improving the algorithm for determining position and orientation.  相似文献   
89.
Sweet basil white mould (BWM, Sclerotinia sclerotiorum) and grey mould (BGM, Botrytis cinerea) are important diseases in Israel and other basil‐growing regions. The impact of microclimate on BWM and BGM and on plant sensitivity to these diseases was studied. Disease incidence was evaluated in three field experiments, each consisting of 10–12 polyethylene‐covered tunnels. BWM and BGM incidences were correlated with air temperature, relative humidity (RH) and soil temperature data. The incidence of BWM was negatively correlated with high (above >25 or >30 °C) air temperatures, RH > 50% and RH > 75% and high (>21 or >24 °C) soil temperatures. BGM incidence was negatively correlated with high (>25 °C) air temperatures and high (>21 or >24 °C) soil temperatures, and positively correlated with RH >65% or >75%. Shoots harvested from plants grown in the walk‐in tunnels were inoculated with S. sclerotiorum or B. cinerea under controlled conditions. Severity of BWM and BGM on those shoots was negatively correlated with tunnel air temperatures of >25 and >30 °C and soil temperatures >18 °C. Thus, high temperatures were related to reduced disease incidence and to reduced sensitivity to the pathogens. Experiments involving potted plants revealed that heating only the root zone suppresses canopy susceptibility to BWM and BGM. These findings indicate that the effect of high greenhouse temperatures involves an indirect systemic effect that renders the host less susceptible to disease. This effect was also observed in harvested shoots that were no longer at the high temperatures, and the effect was systemic.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号