首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   936篇
  免费   39篇
林业   40篇
农学   5篇
基础科学   1篇
  150篇
综合类   118篇
农作物   40篇
水产渔业   41篇
畜牧兽医   468篇
园艺   12篇
植物保护   100篇
  2022年   8篇
  2021年   10篇
  2020年   12篇
  2019年   16篇
  2018年   14篇
  2017年   15篇
  2016年   17篇
  2015年   10篇
  2014年   13篇
  2013年   48篇
  2012年   30篇
  2011年   31篇
  2010年   27篇
  2009年   14篇
  2008年   42篇
  2007年   36篇
  2006年   35篇
  2005年   42篇
  2004年   33篇
  2003年   39篇
  2002年   32篇
  2001年   21篇
  2000年   33篇
  1999年   24篇
  1998年   22篇
  1997年   13篇
  1996年   12篇
  1995年   8篇
  1994年   9篇
  1993年   6篇
  1992年   22篇
  1991年   16篇
  1990年   18篇
  1989年   12篇
  1988年   18篇
  1987年   14篇
  1986年   27篇
  1985年   18篇
  1984年   7篇
  1983年   7篇
  1982年   6篇
  1979年   10篇
  1978年   7篇
  1977年   9篇
  1974年   7篇
  1973年   9篇
  1972年   6篇
  1971年   13篇
  1970年   8篇
  1967年   5篇
排序方式: 共有975条查询结果,搜索用时 15 毫秒
11.
Using extracts from suspension-cultured cells of soybean (Glycine max cv. Mandarin) as a source of active enzymes, the activities of glutathione transferases (GSTs) catalysing the conjugation of 1-chloro-2,4-dinitrobenzene (CDNB) and selective herbicides were determined to be in the order CDNB≫ fomesafen>metolachlor=acifluorfen>chlorimuron-ethyl. GST activities showed a thiol dependence in a substrate-specific manner. Thus, GST activities toward acifluorfen and fomesafen were greater when homoglutathione (hGSH), the endogenously occurring thiol in soybean, was used as the co-substrate rather than glutathione (GSH). Compared with GSH, hGSH addition either reduced or had no effect on GST activities toward other substrates. In the absence of enzyme, the rates of hGSH conjugation with acifluorfen, chlorimuron-ethyl and fomesafen were negligible, suggesting that rapid hGSH conjugation in soybean must be catalysed by GSTs. GST activities were subsequently determined in 14-day-old plants of soybean and a number of annual grass and broadleaf weeds. GST activities of the plants were then related to observed sensitivities to post-emergence applications of the four herbicides. When enzyme activity was expressed on a mg-1 protein basis, all grass weeds and Abutilon theophrasticontained considerably higher GST activity toward CDNB than soybean. With fomesafen as the substrate, GST activities were determined to be in the order soybean≫Echinochloa crus-galli>Digitaria sanguinalis>Sorghum halepense=Setaria faberi with none of the broadleaf weeds showing any activity. This order related well to the observed selectivity of fomesafen, with the exception of A. theophrasti, which was partially tolerant to the herbicide. Using metolachlor as the substrate the order of the GST activities was soybean>A. theophrastiS. halepense>Amaranthus retroflexus>Ipomoea hederacea, with the remaining species showing no activity. GST activities toward metolachlor correlated well with the selectivity of the herbicide toward the broadleaf weeds but not toward the grass weeds. Acifluorfen and chlorimuron-ethyl were selectively active on these species, but GST activities toward these herbicides could not be detected in crude extracts from whole plants. © 1997 SCI  相似文献   
12.
BACKGROUND: The potential for enhanced degradation of the carbamoyloxime nematicides aldicarb and oxamyl and the organophosphate fosthiazate was investigated in 35 UK agricultural soils. Under laboratory conditions, soil samples received three successive applications of nematicide at 25 day intervals. RESULTS: The second and third applications of aldicarb were degraded at a faster rate than the first application in six of the 15 aldicarb‐treated soils, and a further three soils demonstrated rapid degradation of all three applications. High organic matter content and low pH had an inhibitory effect on the rate of aldicarb degradation. Rapid degradation was observed in nine out of the ten soils treated with oxamyl. In contrast, none of the fosthiazate‐treated soils demonstrated enhanced degradation. CONCLUSION: The potential for enhanced degradation of aldicarb and oxamyl was demonstrated in nine out of 15 and nine out of ten soils respectively that had previously been treated with these active substances. Degradation of fosthiazate occurred at a much slower rate, with no evidence of enhanced degradation. Fosthiazate may provide a useful alternative in cases where the efficacy of aldicarb and oxamyl has been reduced as a result of enhanced degradation. Copyright © 2009 Society of Chemical Industry  相似文献   
13.
The change in soil carbon (C) concentration, soil pH and major nutrients for approximately 1,000 topsoil sampled from on-farm experimental sites over a thirty-year period from 1950 to 1980 in north-east Scotland are summarized. This period coincided with increased agricultural intensification, which included regular liming and fertilizer additions. During 2017, 37 of these sites were resampled and reanlaysed. While pH and extractable phosphorus (P) and potassium (K) increased over this period, there was no detectable change in the percentage loss on ignition. Composite soil samples were taken by auger from a depth of 0–15 cm and compared with the corresponding archived samples collected at the initiation of each experiment. Analysis of these resampled soils indicated no significant change in soil carbon (C), although soil pH, extractable magnesium (Mg) and K and Nitrogen (N) concentrations were significantly greater (p < .001) but extractable soil P concentration was significantly less (p = .015) compared with the original samples. Even though measuring C concentration alone is a poor indicator of overall changes in soil C stocks, it does provide a relative quick “early warning” of C losses that would justify a more comprehensive measure of stocks.  相似文献   
14.
15.
Long-term potentiation (LTP) of synaptic strength, the most established cellular model of information storage in the brain, is expressed by an increase in the number of postsynaptic AMPA receptors. However, the source of AMPA receptors mobilized during LTP is unknown. We report that AMPA receptors are transported from recycling endosomes to the plasma membrane for LTP. Stimuli that triggered LTP promoted not only AMPA receptor insertion but also generalized recycling of cargo and membrane from endocytic compartments. Thus, recycling endosomes supply AMPA receptors for LTP and provide a mechanistic link between synaptic potentiation and membrane remodeling during synapse modification.  相似文献   
16.
17.
Increased flour yield in hard wheat is associated with increased endosperm rheology index, calculated from strength and stiffness as measured by the SKCS. A study of the fractured endosperm of hard wheat varieties grouped according to similar rheology index values was performed using environmental scanning electron microscopy (ESEM). Differing microstructures and fracture patterns were observed between each group. Specifically, the group representing high rheology index had a greater concentration of small starch granules in prismatic cells. Samples of diverse wheat germplasm were grown at two sites and subjected to laboratory milling. Starch granule size distribution (SGSD) analysis using a laser diffraction method was undertaken on a subset of samples in triplicate representing a range in flour yield. The results supported an hypothesis for a significant influence of SGSD on flour yield of hard wheat varieties. In addition, a significant part (R2>0.40 (p<0.05) at two sites) of the association appeared to be under genetic control. Results indicate a more even gradation of distributions involving an increase in the sample volume % of small granule (types B and C) and decrease in type A granules. This was associated with increased rheology index values and higher flour yield. The ratio of type A:C starch granules accounted for up to 58% (p<0.05) of the variation in flour yield in the samples studied. Thus, rheological parameters measured using a rapid SKCS screening method can be linked to the genetic regulation of SGSD with implications for the improvement of commercial processing performance of hard wheat.  相似文献   
18.
Grazed pastures based on ryegrass species provide most of the feed for dairy cattle in New Zealand. There are many cultivars of perennial (Lolium perenne), annual and Italian (L. multiflorum), and hybrid (L. boucheanum) ryegrasses available for dairy farmers to use in pasture renewal. This study describes an index which ranks ryegrass cultivars relative to a genetic base according to the estimated economic value (EV) of seasonal dry matter (DM) traits. A farm system model was used to derive EVs (Grazed pastures based on ryegrass species provide most of the feed for dairy cattle in New Zealand. There are many cultivars of perennial (Lolium perenne), annual and Italian (L. multiflorum), and hybrid (L. boucheanum) ryegrasses available for dairy farmers to use in pasture renewal. This study describes an index which ranks ryegrass cultivars relative to a genetic base according to the estimated economic value (EV) of seasonal dry matter (DM) traits. A farm system model was used to derive EVs ($ ha?1 calculated as change in operating profit divided by unit change of the trait) for additional DM produced in different seasons of the year in four regions. The EV of early spring DM was consistently high across all regions, whereas EV for late spring DM was moderate to low. Genotype × environment analysis revealed significant reranking of DM yield among ryegrass cultivars across regions. Hence, separate performance values (PVs) were calculated for two mega‐environments and then combined with the corresponding season and region EV to calculate the overall EV for twenty‐three perennial ryegrass and fifteen short‐term ryegrass cultivars. The difference in operating profit between the highest ranked and lowest ranked perennial ryegrass cultivar ranged from $556 ha?1 to $863 ha?1 year?1 depending on region. For short‐term ryegrasses used for winter feed, the corresponding range was $394 to $478 ha?1 year?1. Using PV for DM yield, it was estimated that plant improvement in perennial ryegrass has added $12–$18 ha?1 year?1 (depending on region) operating profit on dairy farms since the mid‐1960s.  相似文献   
19.
Previously published results from a multidisciplinary research program, Response of Plants to Interacting Stress (ROPIS), initiated by the Electric Power Research Insitute are summarized here. The overall objective of the ROPIS program was to develop a general mechanistic theory of plant response to air pollutants and other stresses. Direct and indirect phytotoxic impacts of O3 combined with induced deficiencies of key nutrients as a consequence of acidic deposition are important components in many of the hypotheses used to explain reported declines in forest growth. In order to address these concerns as they relate to loblolly pine (Pinus taeda L.) growth and develop a greater level of mechanistic understanding of stress response, a study was formulated with two major objectives: (i) over a multi-yr period evaluate the role of loblolly pine genotype in governing loblolly growth response to O3; and (ii) determine the underlying physiological and edaphic basis for loblolly growth response to O3, acidic precipitation, and soil Mg status. An open-top chamber facility located at Oak Ridge, TN provided controlled O3 exposure for the genotype screening study (1986–88) and controlled O3 exposure and rainfall exclusion and addition for the O3-rainfall acidity-soil Mg interaction study (1987–89). A variety of experimental techniques, measurements, and statistical procedures were used over a 4-yr period to quantify various aspects of plant growth, physiology, and soil-plant relationships. Results from the genotype screening study indicate that although family-specific O3 effects were observed at the end of the first year, no statistically significant O3 effects on diameter, height, or total biomass were evident at the end of three growing seasons; nor were any significant O3-family interactions found. In the interaction study, rainfall acidity and soil Mg level had only minimal affects on seedling growth and physiology. Ozone exposure produced significant changes in many variables, the most important being a net retention of carbon in above-ground biomass and a subsequent reduction in carbon allocation to the root system. This change could have important longterm implications for the tree's ability to obtain water and nutrients, maintain important rhizosphere organisms, and achieve a level of vigor that protects against disease and insect attack.  相似文献   
20.
The influence of two experimental soil treatments, Z93 and W91, on nitrogen transformations, microbial activity and plant growth was investigated in soil microcosms. These compounds are commercially marketed fermentation products (Agspectrum) that are sold to be added to field soils in small amounts to promote nitrogen and other nutrient uptake by crops in USA. In laboratory microcosm experiments, soils were amended with finely ground alfalfa-leaves or wheat straw, or left unamended, in an attempt to alter patterns of soil nitrogen mineralization and immobilization. Soils were treated in the microcosms with Z93 and W91 at rates equivalent to the recommended field application rates, that range from 0.2 to 1.1 l ha−1, (0.005-0.03 μl g−1 soil). We measured their effects on soil microbial activity (substrate-induced respiration (SIR), dehydrogenase activity (DHA) and acid phosphatase activity (PHOS)), soil nitrogen pools (microbial biomass N, mineral N, dissolved organic N), and transformations (net N mineralization and nitrification, 15N dilution of the mineral N pool, and accumulation of mineral N on ion-exchange resins), and on wheat plant germination and growth (shoot and root biomass, shoot length, N uptake and 15N enrichment of shoot tissues), for up to 56 days after treatment. To follow the movement of nitrogen from inorganic fertilizer into plant biomass we used a 15N isotopic tracer. Most of the soil and plant responses to treatment with Z93 or W91 differed according to the type of organic amendment that was used. Soil treatment with either Z93 or W91 influenced phosphatase activity strongly but did not have much effect on SIR or DHA. Both chemicals altered the rates of decomposition and mineralization of organic materials in the soil, which was evidenced by significant increases in the rates of the decomposition of buried wheat straw, and by the acceleration of net, rates of N mineralization, relative to those of the controls. Soil nitrate availability increased at the end of the experiment in response to both chemical treatments. In alfalfa-amended soils, the final plant biomass was decreased significantly by treatment with W91. Increased plant growth and N-use efficiency in straw-amended soil, resulting from treatments with Z93 or W91, was linked to increased rates of N mineralization from indigenous soil organic materials. This supports the marketing of these compounds as promoters of N uptake at these low dosage inputs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号