首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   799篇
  免费   60篇
林业   84篇
农学   30篇
基础科学   7篇
  195篇
综合类   39篇
农作物   39篇
水产渔业   121篇
畜牧兽医   248篇
园艺   23篇
植物保护   73篇
  2024年   1篇
  2023年   9篇
  2022年   26篇
  2021年   33篇
  2020年   47篇
  2019年   61篇
  2018年   37篇
  2017年   34篇
  2016年   40篇
  2015年   28篇
  2014年   40篇
  2013年   48篇
  2012年   66篇
  2011年   52篇
  2010年   48篇
  2009年   33篇
  2008年   44篇
  2007年   51篇
  2006年   28篇
  2005年   22篇
  2004年   26篇
  2003年   22篇
  2002年   19篇
  2001年   3篇
  2000年   7篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1990年   2篇
  1989年   4篇
  1988年   5篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   3篇
  1978年   1篇
  1966年   1篇
排序方式: 共有859条查询结果,搜索用时 0 毫秒
61.
With the development of the textile industry, there has been a demand for dye removal from contaminated effluents. In recent years, attention has been directed toward various natural solid materials that are capable of removing pollutants from contaminated water at low cost. One such material is sugarcane bagasse. The aim of the present study was to evaluate adsorption of the dye Acid Violet Alizarin N with different concentrations of sugarcane bagasse and granulometry in agitated systems at different pH. The most promising data (achieved with pH 2.5) was analyzed with both Freundlich and Langmuir isotherms equations. The model that better fits dye adsorption interaction into sugarcane bagasse is Freundlich equation, and thus the multilayer model. Moreover, a smaller bagasse granulometry led to greater dye adsorption. The best treatment was achieved with a granulometry value lower than 0.21 mm at pH 2.50, in which the total removal was estimated at a concentration of 16.25 mg mL−1. Hence, sugarcane bagasse proves to be very attractive for dye removal from textile effluents.  相似文献   
62.
Coupled nitrification-denitrification and potential denitrification were measured as 15N2O and 15N2 evolution rates in ammonium sulphate-treated rice soils with or without Terrazole [5-ethoxy-3 (trichloromethyl) 1,2,3 Thiadizole] under laboratory and field conditions. The greatest coupled nitrification-denitrification activity was found after drying and rewetting the soil, with maximum values of 322 ng N cm–2 h–1 in the laboratory and 90.8 ng N cm–2 h–1 in the field. These 15N2O + 15N2 evolution rates were about 10 times lower than potential denitrification in these soils. These results and the observed decrease in 15N2O + 15N2 evolution rate in soils treated with Terrazole (60% under laboratory conditions and 52% under field conditions) indicate that denitrification was limited by coupled nitrification-denitrification activity. Oxygen and previous addition of ammonium sulphate appear to control the rate of 15N2O + 15N2 evolution in ammonium sulphate-fertilised soils.  相似文献   
63.
There is a direct relationship between soil nutrient concentration in localized zones and root proliferation and elongation under well‐watered conditions. However, in field studies under semiarid conditions this relationship can change due to higher salt accumulation and soil dryness that affect root growth, water stress resistance, and seedling survival. We assessed the effect of different locations of fertilizer placement in the soil profile and water availability on root zone salinity, root development and ecophysiological responses of Quillaja saponaria Mol. after outplanting. A single dose (6 g L?1) of controlled‐release nitrogen fertilizer (CRFN) was placed at 0 cm (top layer), 15 cm (middle layer), or 30 cm (bottom layer) depth in the containers in a greenhouse, in addition to an unfertilized treatment (control). After 6 months, seedlings were transplanted to the field and subjected to weekly watering regimes (2 L plant?1 and unwatered). Morphological and ecophysiological parameters were periodically measured on seedlings, as well as soil electrical conductivity (EC). After 1 year, the shoot : root ratio of unwatered seedlings decreased as a function of CRFN placement depth, which was attributed to lower shoot growth and not to greater root growth. The root morphology of the bottom layer treatment was negatively affected by high EC in unwatered seedlings. Greater total root length and root volume of the middle layer treatment was found only when well‐watered; however, this did not contribute to improve physiological responses against water stress. The lowest EC and the highest photochemical efficiency, net photosynthesis, and stomatal conductance were shown by unfertilized seedlings, independent of water availability. Our findings suggest that varying depth of CRFN placement does not contribute significantly to improve root growth under water restriction. Water supplements, independently of the CRFN location in the substrate, contribute to decrease root zone salinity, and consequently, improve root volume growth.  相似文献   
64.
A set of 72?PM10 samples from low-polluted urban and rural locations belonging to the regional air monitoring network of Extremadura (Spain) were collected in a 1?year sampling period. Sample pre-treatment and analytical determination by gas chromatography?Cion trap mass spectrometry were optimised and validated for the analysis of the priority 16 US Environmental Protection Agency polycyclic aromatic hydrocarbons (PAHs). The influence of meteorological conditions (temperature, relative humidity and solar radiation) and other atmospheric pollutants (O3, NO2, SO2, PM10) has been covered in detail and Pearson correlation test were used for this purpose. Spatial distribution of particulate PAHs was evaluated and the comparison with other European sites was also established. Possible emission sources were identified and assigned by using molecular diagnostic criteria.  相似文献   
65.
Knowledge of the effect of a multiple combination of summer/winter crop rotation on the microbiological properties of soil would allow a more adequate response to its use. This study aimed to evaluate the effect of the rotation of three summer crops (continuous soybean, continuous maize and soybean/maize rotation) in combination with seven winter crops (maize, sunflower, oilseed radish, millet, pigeon pea, sorghum and sunn hemp) on the microbiological properties of the soil. A soybean/maize (SM) rotation had a greater influence on microbial biomass than continuous maize (MM) and continuous soybean (SS). Urease and phosphatase activities were not affected by the crop rotation. Dehydrogenase activity was higher in continuous crops (MM and SS) than in SM, whereas respiratory activity was higher in SM than in continuous crops. For the SM rotation, the main variables selected by principal components analysis were microbial biomass C, N and P, respiratory and phosphatase activities, and microbial quotient. Pigeon pea, sorghum and sunn hemp had a greater effect on soil properties than the other winter crops. In general, the degree of influence of the summer and winter crops on the microbiological soil properties can be ranked as follows: SM > MM > SS, and millet > sorghum > sunn hemp > radish > pigeon pea > maize, respectively.  相似文献   
66.
Inorganic nitrogen (N) determination in soil extracts is a useful tool in studying soil–N interactions. The main method used worldwide is the steam distillation, but colorimetric methodologies show advantages of being quick, simple, sensitive, and higher yield. However, they are subject to disruption when the extract has interfering organic N, limiting its application in tropical soil. The aim of this study is to evaluate colorimetric methods for the determination of NH4+ (through Berthelot reaction) and NO3? + NO2? (through Griess-Ilosvay reaction) in saline extracts of tropical soils by addition of activated charcoal during the extraction process. It is recommended to use extraction solution of 2 mol L?1 potassium chloride (KCl) and reaction time of 30 min. Validation parameters confirmed the best performance of the colorimetric methods, revealing results favorable to the addition of the activated charcoal in the extraction process to increase the accuracy and precision of the colorimetric methods.  相似文献   
67.
Warland and Thurtell (2000) proposed an analytical dispersion Lagrangian analysis (hereafter WT analysis) to relate the mean scalar concentration field to source profiles inside the canopy. The first objective of this study was to evaluate the performance of the WT analysis with existing turbulence statistics parameterizations in a corn canopy, by comparing its inferred net ecosystem CO2 exchange (NEE) and latent heat flux (λE) with eddy covariance measurements. The second objective was to assess the performance of the WT analysis to infer the soil CO2 flux. Four parameterizations of turbulence statistics were used to estimate Lagrangian time scale (TL) and standard deviation of vertical wind velocity (σw) profiles. The estimated TL and σw profiles were then corrected for atmospheric stability conditions. The field experiment was carried out in a corn field from August to October 2007 and 2008. Profiles of water vapour and CO2 mixing ratios were measured using a multiport sampling system connected to an infrared gas analyzer. Wind velocity within and above the canopy and eddy covariance measurements over the canopy were taken. The soil respiration, estimated using the WT analysis, was compared to estimates obtained by an empirical model. WT analysis fluxes showed good correlation (R2 = 0.77-0.88) with NEE and λE obtained by the eddy covariance technique, but overestimated net fluxes, especially when corrections for atmospheric stability were applied. The optimization of TL and σw profiles using in-canopy turbulence measurements improved the agreement between measured and modeled NEE and λE. Inferred soil CO2 fluxes were underestimated and were poorly correlated (R2 = 0.02-0.01) with estimates obtained using an empirical model based on soil temperature. This poor performance in estimating the soil respiration is likely caused by the decoupling between inside and above canopy flows.  相似文献   
68.
This study evaluated the effect of lead (Pb(II)), zinc (Zn(II)) and copper (Cu(II)) on growth and sporulation of four Halophytophthora species (Halophytophthora vesicula, Halophytophthora elongata, Halophytophthora spinosa var. lobata, and an oogonia-producing Halophytophthora sp.) isolated from different mangrove sites in Taiwan. Results show that all isolates grew well or even better at 1 ppm concentration of the heavy metals tested. Growth of all test isolates was totally inhibited at 500 ppm, except for H. spinosa var. lobata exposed to Zn(II). For sporulation, all isolates produced moderate to abundant zoosporangia or oogonia at 1 ppm Pb(II) and Zn(II). Production of zoosporangia by H. vesicula, H. elongata and H. spinosa var. lobata was significantly affected or totally inhibited at 1 ppm Pb(II) and Zn(II) and all concentrations of Cu(II). Abnormal oogonia were produced by Halophytophthora sp. at 10 ppm Cu(II) and 100 ppm of the three heavy metals. In general, Cu(II) and Zn(II) were found to be the most toxic, and the least toxic was Pb(II). H. spinosa var. lobata was the most tolerant to all the heavy metals, while H. vesicula and H. elongata were the most sensitive. Results of this study shows that increased concentrations of Pb(II), Cu(II), and Zn(II) in the mangrove environment can significantly affect growth and impair normal reproduction of Halophytophthora species.  相似文献   
69.
Copper biosorption onto chemically modified biomass of marine alga Sargassum filipendula was investigated in a batch reactor and a fixed bed column. Experiments were carried out in the batch reactor to obtain kinetic and equilibrium data and to assess the copper desorption efficiency of different eluent solutions. The pseudo-first-order, pseudo-second-order, and Langmuir kinetic models were used to correlate kinetic data. The experimental data fitted well to the pseudo first order and Langmuir kinetic models. Langmuir and Freundlich models were applied to describe the equilibrium data obtained at a fixed temperature of 30°C and at pH values of 3.0, 4.0, 5.0, and 6.0. The maximum capacities of copper biosorption onto the algal biomass were 1.43, 1.59, 2.40, and 2.36 mequiv./g at pH 3.0, 4.0, 5.0, and 6.0, respectively. The efficiencies of two eluent solutions (calcium chloride and hydrochloric acid) for copper removal from the biomass were evaluated at different concentrations (0.1, 0.2, 0.5, and 1.0 mol/L). The efficiencies of the calcium chloride solutions varied from 1% to 14%, while efficiencies varying from 95% to 99% were obtained when hydrochloric acid solutions were applied. Three adsorption/desorption cycles were carried out in a fixed bed column using 0.1 mol/L hydrochloric acid as eluent solution. The results showed that an increase in the number of cycles led to a reduction in the adsorption capacity of the alga. The desorbed copper fraction presented no significant variation, remaining around 63% in the three adsorption/desorption cycles.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号