首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   2篇
农学   1篇
  16篇
综合类   13篇
水产渔业   5篇
畜牧兽医   36篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   5篇
  2009年   1篇
  2008年   1篇
  2007年   8篇
  2006年   1篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1996年   1篇
  1995年   2篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1976年   1篇
  1974年   4篇
  1972年   2篇
  1962年   2篇
  1952年   1篇
  1921年   1篇
  1917年   1篇
  1915年   1篇
排序方式: 共有71条查询结果,搜索用时 0 毫秒
31.
The structure of epothilone A, bound to alpha,beta-tubulin in zinc-stabilized sheets, was determined by a combination of electron crystallography at 2.89 angstrom resolution and nuclear magnetic resonance-based conformational analysis. The complex explains both the broad-based epothilone structure-activity relationship and the known mutational resistance profile. Comparison with Taxol shows that the longstanding expectation of a common pharmacophore is not met, because each ligand exploits the tubulin-binding pocket in a unique and independent manner.  相似文献   
32.
We measured atmospheric nutrient deposition as wet deposition and dry deposition to dry and wet surfaces. Our analyses offer estimates of atmospheric transport of nitrogen (N), phosphorus (P) and silicon (Si) in an agricultural region. Annual dry and wet deposition (ha?1 year?1) was 0.3 kg of P, 7.7 kg of N, and 6.1 kg of Si; lower than or similar to values seen in other landscapes. N:P and Si:N imply that atmospheric deposition enhances P and Si limitation. Most P and soluble reactive P (SRP) deposition occurred as dryfall and most dry-deposited P was SRP so would be more readily assimilable by plant life than rainfall P. Dry deposition of N to wet surfaces was several times greater than to dry surfaces, suggesting that ammonia (NH x ) gas absorbtion by water associated with wet surfaces is an important N transport mechanism. Deposition of all nutrients peaked when agricultural planting and fertilization were active; ratios of NH x :nitrate (NO x ) hbox{reflected} the predominant use of NH x fertilizer. Wet deposition estimates were consistent over hundreds of km, but dry deposition estimates were influenced by animal confinements and construction. Precipitation wash-out of atmospheric nutrients was substantial but larger rain events yielded higher rates of wet deposition. Methodological results showed that local dust contaminated wet deposition more than dry; insects, bird droppings and leaves may have biased past deposition estimates; and estimating dry deposition to dry plastic buckets may underestimate annual deposition of N, especially NH x .  相似文献   
33.
Land and water interface zones   总被引:1,自引:0,他引:1  
This paper reports analyses of C pools and fluxes in land-water interface zones completed at the International Workshop: Terrestrial Biospheric Carbon Fluxes; Quantification of Sinks and Sources of CO2 (Bad Harzburg, Germany, March 1–5, 1993). The objective was to determine the role of these zones as global sinks of atmospheric CO2 as part of a larger effort to quantify global C sinks and sources in the past (ca. 1850), the present, and the foreseeable future (ca. 2050). Assuming the world population doubles by the year 2050, storage of atmospheric C in reservoirs will also double, as will river loads of atmospheric C and nutrients. It is estimated that C sinks in temperate and boreal wetlands have decreased by about 50%, from 0.2 to 0.1 Gt C yr?1 since 1850. The total decrease for wetlands may be considerably larger when tropical wetlands are taken into account, however, the area and C density of tropical wetlands are not well known at this time. Changes in cultivation practices and improved sampling of methaneogenesis have caused estimates of CH4 emissions from ricelands to drop substantially from 150 to 60 Tg yr?1. Even with doubled N and P loads, rivers are unlikely to fertilize more than about 20% of the new primary production in the coastal ocean. The source of C for this new production may not be the atmosphere, however, because the coastal ocean exchanges large quantities of DIC with the open ocean. Until the C fluxes from air-sea exchange of CO2 and DIC are better quantified, the C-sink potential of the coastal ocean will remain a major uncertainty in the global C cycle. Analysis of model simulations of oceanic C uptake reconfirmed that the open ocean appears to take up about 2.0 Gt C yr?1 from the atmosphere and that model estimates are in better accord now, ±0.5 Gt C yr?1, than ever before. Land use management must consider the unique C sinks in coastal and alluvial wetlands in order to minimize the future negative impacts of agriculture and urban development. Long-term monitoring will be essential to prove the success, or failure, of management practices to sustain wetlands in the future. Relative to the other systems examined at the workshop, the C-sink capacity of the ocean (excluding estuaries) is not likely to be measurably affected in the foreseeable future by the management scenarios considered at the workshop.  相似文献   
34.
35.
36.
Pain is an unpleasant and emotional experience associated with actual or potential tissue damage. The current method of caring for a person with multiple issues and problems is a "multidisciplinary" approach; however, the disadvantages of a multidisciplinary approach are many. A more desirable alternative is an "interdisciplinary" approach. Interdisciplinary care is predicated on professionals communicating with one another about a single patient and designing care that is in the overall best interest of the patient. This paper describes the formation of the International Veterinary Academy of Pain Management, whose objective is to promote the interdisciplinary approach to animal pain management.  相似文献   
37.
The fertility of ram spermatozoa that had undergone flow cytometric sorting (MoFlo SX) and cryopreservation was assessed after low-dose insemination of synchronized Merino ewes. Oestrus was synchronized with progestagen-impregnated pessaries, PMSG and GnRH treatment. Ewes (n = 360) were inseminated with 1 x 10(6), 5 x 10(6) or 15 x 10(6) motile sorted frozen-thawed (S(1), S(5), or S(15) respectively) or non-sorted frozen-thawed (C(1), C(5) or C(15) respectively) spermatozoa from three rams. An additional group of ewes were inseminated with 50 x 10(6) motile non-sorted frozen-thawed spermatozoa (C(50)) to provide a commercial dose control. The percentage of ewes lambing after insemination was similar for C(50) (24/38, 63.2%), C(15) (37/54, 68.5%), S(15) (38/57, 66.7%), S(5) (37/56, 66.1%) and S(1) (32/52, 61.5%) groups (p > 0.05), but lower for C(5) (19/48, 39.6%) and C(1) (19/55, 34.5%) treatments (p < 0.05). This study demonstrates sorted ram spermatozoa are equally fertile to non-sorted spermatozoa even when inseminated at 2% of the dose. Furthermore, at very low artificial insemination doses (1 or 5 million motile) the fertility of sorted ram spermatozoa is superior to non-sorted spermatozoa inseminated in equal numbers. These results have significance for the future commercialization of sex-preselection technology in sheep as a reduction in the minimum effective sperm number will allow a corresponding decrease in the associated cost per dose.  相似文献   
38.
39.
40.
Natural CO2 sinks in terrestrial and marine environments are important components of the global carbon cycle, yet the sign and magnitudes of key fluxes among them are unknown. The results of the Palmas Del Mar Workshop — Natural Sinks of CO2 presented in this special issue and its companion hardbound volume of Water, Air, & Soil Pollution, provide a synthesis of current research on the carbon cycle, CO2 sinks and associated processes and fluxes, and critical research needs to assess the potential role of forest and land-use management in carbon sequestration. The papers in this volume present data, observations, and model simulations that demonstrate: 1) the existence of natural CO2 sinks that could mitigate a significant amount of CO2 emissions from fossilfuel combustion; 2) probable, human-caused imbalances in C exchanges among vegetation, soils, and the atmosphere; 3) enhanced C storage in vegetation in response to excess atmospheric CO2; 4) strong interactions among carbon, nutrient and hydrological cycles; and 5) an excess of carbon production over consumption in several, large managed forests. Although it appears unlikely that the search for the “missing” C sink required to balance the C budget will end in the open ocean, new estimates of C storage in mangrove wood and peat, suggest that coastal ecosystems have the capacity to store significant amounts of carbon in vegetation and sediments. Convincing analyses are also presented indicating the technical and economical feasibility of managing existing lands to sequester additional carbon. Long-term field studies of CO2 fertilization effects and carbon cycling by plants and soils in geographically important systems, native forests, and coastal ecosystems will go a long way toward meeting the research needs identified at the workshop.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号