首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   2篇
林业   59篇
农学   1篇
  8篇
综合类   19篇
农作物   8篇
水产渔业   4篇
畜牧兽医   51篇
植物保护   2篇
  2023年   1篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   4篇
  2015年   6篇
  2014年   3篇
  2013年   10篇
  2012年   8篇
  2011年   7篇
  2010年   7篇
  2009年   8篇
  2008年   10篇
  2007年   3篇
  2006年   6篇
  2005年   4篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   5篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1982年   2篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1937年   1篇
  1929年   1篇
  1927年   2篇
  1924年   3篇
  1921年   1篇
  1906年   1篇
  1902年   2篇
  1896年   1篇
  1892年   1篇
排序方式: 共有152条查询结果,搜索用时 15 毫秒
11.
Fertilization is standard practice in forest tree seedling nursery culture. Additionally, fertilization at outplanting has potential to facilitate nutrient uptake and reduce transplant shock. Fertilization, however, may dramatically alter rhizosphere chemical properties such as pH, ion availability, and electrical conductivity (EC). These changes may inhibit root system growth and function by reducing soil osmotic potential and creating specific ion toxicities. The risk of root damage associated with high EC levels appears to be dependent on species, age of root system, and soil moisture availability. Root inhibition in container nursery culture of conifers is likely to occur above 2.5 dS m−1, though threshold EC levels for bareroot culture and field plantings are largely unavailable. Fertilization at outplanting has the added risk that drought conditions may prevent leaching of excess fertilizer salts, which can increase rhizosphere EC beyond safe levels and ultimately impair root uptake of water or nutrients. For fertilization programs to be successful, a critical threshold balance must be maintained between optimizing seedling nutrient availability in the rhizosphere, while minimizing potential for root damage. Future research is needed to identify optimal EC levels for a range of species across all stages of the reforestation process, from nursery culture through plantation establishment.  相似文献   
12.
13.
Bareroot hardwood seedling production involves intensive soil management. To increase soil organic matter (OM), nurseries commonly grow a cover crop for 1 year after every 1–2 year of seedling production. Raising soil OM levels can also be achieved through addition of soil amendments. We studied the influence of chicken manure (CM) and composted leaf, tree, and lawn trimmings (Cp) on soil properties and morphology of green ash (Fraxinus pennsylvanica Marsh.) and northern red oak (Quercus rubra L.) seedlings. CM was applied at 725, 1450, or 2900 kg ha−1 (CM725, CM1450, and CM2900, respectively) and Cp was applied at 200 m3 ha−1. Addition of CM and Cp significantly raised soil OM levels and altered soil chemical properties compared to the control (Ctrl). Root-collar diameter increased with addition of CM1450, CM2900, or Cp compared to CM725 or Ctrl plots for northern red oak, but was largest in soils amended with CM2900 for green ash. Conversely, height was greatest with addition of CM725 for northern red oak, but green ash seedlings were shorter in Ctrl plots than in all amendments except for CM725. Root volume of green ash and northern red oak seedlings was positively influenced by addition of CM or Cp. Seedling responses to nursery soil amendments vary with different forms and amounts of OM. Benefits to seedling growth through application of appropriate materials in the proper balance can improve seedling morphological quality and positively influence soil chemical properties.  相似文献   
14.
Jacobs  Douglass F.  Rose  Robin  Haase  Diane L.  Morgan  Paul D. 《New Forests》2003,26(3):263-277
This experiment evaluated the influence of manure, peat, and vermiculite incorporated at low and high rates (0.0118 and 0.0236 m3/m2) and under two soil moisture regimes on Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedling (1+0 for 1+1) xylem water potential (xylem), whole-plant growth, root architectural development, and subsequent field performance under fertilized and non-fertilized conditions. Trends in soil moisture retention were observed (high manure > high peat > control) but there were no differences in xylem. Root length in the wetter soil moisture experiment was initially (three months) greatest for seedlings in high vermiculite and least in high manure but there were no differences among treatments at lifting (eight months). Mean height was greatest for seedlings grown in vermiculite and peat (wetter nursery experiment) after two field seasons. Field fertilization (35 g/seedling) with controlled-release fertilizer in the planting hole stimulated height growth initially, but decreased height and diameter growth during the second growing season. Dramatic improvements associated with the use of nursery soil amendments were not realized, but the failure to identify negative effects, a potential reduction in disease incidence, and improvement of nursery soil physical and chemical properties may justify their use.  相似文献   
15.
On three sites in coastal northwestern Oregon, USA, seedling root and shoot development were assessed for Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), western hemlock (Tsuga heterophylla (Raf.) Sarg.), and western red-cedar (Thuja plicata Donn ex D. Don) container seedlings under varying sulfometuron methyl (Oust XP®) herbicide application treatments. Treatments consisted of application of 0.16 kg active ingredient (ai) ha?1 as a site preparation in fall 2003, a release application in fall 2004, or a control treatment with no application. Seedlings were planted in winter 2004 and measurements recorded in summer 2004, winter 2005, and summer 2005. During first season growth, western red-cedar seedlings showed the greatest negative impact to site preparation compared to the control with overall average new root length outside the root plug reduced by 67%. Significant reductions in root length also occurred for western hemlock (47%) and Douglas-fir (40%) seedlings. About 9 months after the release treatment, and 21 months after the site preparation application, there were no significant differences between treatments for any measured parameter. These findings suggest that seedlings under the site preparation treatment recovered from initial damage incurred to the root system. Lack of seedling response under the release treatment may be the result of opposing influences from the herbicide application associated with seedling phytotoxicity and enhanced seedling development resulting from effective vegetation control. Although our study was limited to 21 months following planting, reduced vegetation cover in the site preparation and release treatments suggests that these treatments may benefit future seedling growth.  相似文献   
16.
Holm oak (Quercus ilex L.) seedlings were exponentially (E) nutrient loaded using incremental increases in fertilizer addition or conventionally (C) fertilized using a constant fertilizer rate during nursery culture. The fertility treatments (mg N plant−1) were control (0), 25E, 100E, and 100C. Subsequently, 1-year-old plants were transplanted under simulated soil fertility gradients in a greenhouse to evaluate effects of nutrient loading and post-transplant fertility on seedling performance. Post-transplant fertility consisted of fertilizing plants at two rates (0 vs. 200 mg N plant−1). A water-soluble fertilizer 20-20-20 was supplied in both nursery and post-transplant experiments. Nutrient loading increased plant N content by 73% in 100E and by 75% in 100C relative to controls, although no significant differences were detected between constant and exponential fertilization regimes at the 100 mg N plant−1 rate. When transplanted, nutrient loading promoted post-transplant root growth relative to shoot, implicating potential to confer competitive advantage to loaded holm oak seedlings after trans-planting. In contrast, post-transplant fertility increased new shoot dry mass by 140% as well as N, P and K content relative to controls. Results suggest that holm oak seedlings can be successfully nutrient loaded in the nursery at higher fertility rates, improving its potential to extend new roots, but alternative fertilization regimes and schedules that better fit nutrient availability to the growth rhythm and conservative strategy of this species must be tested.  相似文献   
17.

Purpose

The purpose of this study was to determine the first-order rate constants and half-lives of aerobic and anaerobic biomineralization of atrazine in soil samples from an agricultural farm site that had been previously used for mixing pesticide formulations and washing application equipment. Atrazine catabolic genes and atrazine-degrading bacteria in the soil samples were analyzed by molecular methods.

Materials and methods

Biomineralization of atrazine was measured in soil samples with a [U-ring-14C]-atrazine biometer technique in soil samples. Enrichment cultures growing with atrazine were derived from soil samples and they were analyzed for bacterial diversity by constructing 16S rDNA clone libraries and sequencing. Bacterial isolates were also obtained and they were screened for atrazine catabolic genes.

Results and discussion

The soils contained active atrazine-metabolizing microbial communities and both aerobic and anaerobic biomineralization of [U-ring-14C]-atrazine to 14CO2 was demonstrated. In contrast to aerobic incubations, anaerobic biometers displayed considerable differences in the kinetics of atrazine mineralization between duplicates. Sequence analysis of 16S rDNA clone libraries constructed from the enrichment cultures revealed a preponderance of Variovorax spp. (51 %) and Schlesneria (16 %). Analysis of 16S rRNA gene sequences from pure cultures (n?=?12) isolated from enrichment cultures yielded almost exclusively Arthrobacter spp. (83 %; 10/12 isolates). PCR screening of pure culture isolates for atrazine catabolic genes detected atzB, atzC, trzD, trzN, and possibly atzA. The presence of a complete metabolic pathway was not demonstrated by the amplification of catabolic genes among these isolates.

Conclusions

The soils contained active atrazine-metabolizing microbial communities. The anaerobic biometer data showed variable response of atrazine biomineralization to external electron acceptor conditions. Partial pathways are inevitable in soil microbial communities, with metabolites linking into other catabolic and assimilative pathways of carbon and nitrogen. There was no evidence for the complete set of functional genes of the known pathways of atrazine biomineralization among the isolates.
  相似文献   
18.

Purpose

Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) is an important native tree species in China. Consecutive cropping traditionally occurs in Chinese fir plantations (CFPs), but this practice has resulted in productivity declines in subsequent rotations. This study was designed to better understand the change of soil properties in the continuous cropping CFPs.

Materials and methods

We investigated soil pH, soil organic matter (SOM), and nutrient contents in different soil layers and in rhizosphere soil (RS) and non-rhizosphere soil (NRS) under CFPs of different ages and in different rotations.

Results and discussion

In the upper (0–20 cm) soil layer, soil pH decreased, while SOM increased, beneath mature CFPs with consecutive rotations. Total nitrogen (TN), available potassium, and available phosphorus contents in the upper soil layers did not differ significantly with consecutive rotations. Soil pH in RS was significantly lower than in NRS under mature plantations of the third rotation. Soil organic matter, TN, and available nitrogen did not differ between RS and NRS. Available phosphorus in RS was consistently lower than in NRS, and was highly deficient in the third rotation.

Conclusions

We conclude that no severe soil nutrient degradation occurred in the continuous cropping CFPs examined in this study, with soil acidification and phosphorus deficiency being two primary problems observed.
  相似文献   
19.
Physiological mechanisms by which nitrogen (N) fertilization affects growth and development in temperate deciduous forest trees are not clearly understood, especially under intensive silvicultural systems. Grafted, Tippecanoe 1 cultivar black walnut (Juglans nigra L.) trees were grown in an intensively managed plantation in west-central Spain and subjected to six, fixed-nutrient-ratio complete fertilizer treatments (defined as 0, 25, 50, 75, 150, and 300 g N tree?1) delivered via daily fertigation. Leaf chemistry and morphology were evaluated from June to September, and gas exchange was measured in July. Specific leaf mass, leaflet nitrogen (N), and chlorophyll concentrations varied over the course of the growing season, yet consistently increased with increasing fertilization. Net photosynthesis at ambient (A net) and light-saturated (A max) conditions increased from the unfertilized control to lowest treatment (25 g N) but did not increase at higher fertilizer rates. Photosynthetic N and chlorophyll use efficiencies decreased with increasing fertilization, but photosynthetic phosphorus and water use efficiencies increased. Transpiration rates and dark respiration were not significantly affected by treatment. Overall, the lowest fertilizer treatment (25 g N) had the greatest photosynthetic efficiency. Interactions between N and other nutrients with increasing fertilizer application suggested potential for nutrient imbalances at high fertilization rates. Our results provide a physiological justification for the use of low-to-moderate fertilization as an efficient strategy to promote black walnut plantation establishment under intensive cultural systems.  相似文献   
20.
Most studies examining inorganic N form effects on growth and nutrition of forest trees have been conducted on single species from boreal or temperate environments, while comparative studies with species from other biomes are scarce. We evaluated the response of two Mediterranean trees of contrasting ecology, Quercus ilex L. and Pinus halepensis Mill., to cultivation with distinct inorganic N forms. Seedlings were fertilized with different NH4 +/NO3 ? proportion at either 1 or 10 mM N. In both species, N forms had small effects at low N concentration, but at high N concentration they markedly affected the plant performance. A greater proportion of NH4 + in the fertilizer at high N caused toxicity as it reduced growth and caused seedling death, with the effect being greater in Q. ilex than in P. halepensis. An increase in the proportion of NO3 ? at high N strongly enhanced growth relative to low N plants in P. halepensis but had minor effects in Q. ilex. Relatively more NH4 + in the fertilizer enhanced plant P concentration but reduced K concentration in both species, while the opposite effect occurred with NO3 ?, and these effects were enhanced under high N concentration. We conclude that species responses to inorganic N forms were related to their ecology. P. halepensis, a pioneer tree, had improved performance with NO3 ? at high N concentration and showed strong plasticity to changes in N supply. Q. ilex, a late successional tree, had low responsiveness to N form or concentration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号