首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1111篇
  免费   139篇
畜牧兽医   1250篇
  2023年   2篇
  2020年   1篇
  2019年   2篇
  2018年   21篇
  2017年   25篇
  2015年   93篇
  2014年   121篇
  2013年   124篇
  2012年   83篇
  2011年   16篇
  2010年   65篇
  2009年   156篇
  2008年   45篇
  2007年   4篇
  2006年   5篇
  2005年   7篇
  2004年   3篇
  2003年   7篇
  2002年   26篇
  2001年   28篇
  2000年   10篇
  1999年   32篇
  1998年   65篇
  1997年   33篇
  1996年   41篇
  1995年   56篇
  1994年   48篇
  1993年   37篇
  1992年   32篇
  1991年   45篇
  1990年   6篇
  1989年   1篇
  1988年   3篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
排序方式: 共有1250条查询结果,搜索用时 390 毫秒
11.
12.
13.
14.
15.
16.
17.
Objective—To determine the safety and efficacy of propofol, after detomidine-butorphanol premedication, for induction and anesthetic maintenance for carotid artery translocation and castration or ovariectomy in goats. Study Design—Case series. Animals—Nine 4-month-old Spanish goats (17.1 ± 2.6 kg) were used to evaluate propofol anesthesia for carotid artery translocation and castration or ovariectomy. Methods—Goats were premedicated with detomidine (10 μg/kg intramuscularly [IM]) and butorphanol (0.1 mg/kg IM) and induced with an initial bolus of propofol (3 to 4 mg/kg intravenously [IV]). If necessary for intubation, additional propofol was given in 5-mg (IV) increments. Propofol infusion (0.3 mg/kg/min IV) was used to maintain anesthesia, and oxygen was insufflated (5 L/min). The infusion rate was adjusted to maintain an acceptable anesthetic plane as determined by movement, muscle relaxation, ocular signs, response to surgery, and cardiopulmonary responses. Systolic (SAP), mean (MAP) and diastolic (DAP) arterial pressures, heart rate (HR), ECG, respiratory rate (RR), Spo2, and rectal temperature (T) were recorded every 5 minutes postinduction; arterial blood gas samples were collected every 15 minutes. Normally distributed data are represented as mean ± SD; other data are medians (range). Results—Propofol (4.3 ± 0.9 mg/kg IV) produced smooth, rapid (15.2 ± 6 sec) sternal recumbency. Propofol infusion (0.52 ± 0.11 mg/kg/min IV) maintained anesthesia. Mean anesthesia time was 83 ± 15 minutes. Muscle relaxation was good; eye signs indicated surgical anesthesia; two goats moved before surgery began; one goat moved twice during laparotomy. Means are reported over the course of the data collection period. Means during the anesthesia for pHa (arterial PH), Paco2, Pao2, HCO3, and BE (base excess) ranged from 7.233 ± 0.067 to 7.319 ± 0.026, 54.1 ± 4.6 to 65.3 ± 12.0 mm Hg, 133.1 ± 45.4 to 183.8 ± 75.1 mm Hg, 26.9 ± 2.6 to 28.2 ± 2.1 mEq/L, and -0.8 ± 2.9 to 1.4 ± 2.2 mEq/L. Means over time for MAP were 53 ± 12 to 85 ± 21 mm Hg. Mean HR varied over time from 81 ± 6 to 91 ± 11 beats/minute; mean RR, from 9 ± 8 to 15 ± 5 breaths/minute; Spo2, from 97 ± 3% to 98 ± 3%; mean T, from 36.0 ± 0.6±C to 39.1 ± 0.7±C. Over time, Spo2 and Sao2 did not change significantly; HR, RR, T, and Paco2 decreased significantly; SAP, DAP, MAP, pHa, Pao2, and BE increased significantly. HCO3 concentrations increased significantly, peaking at 45 minutes. Recoveries were smooth and rapid; the time from the end of propofol infusion to extubation was 7.3 ± 3 minutes, to sternal was 9.2 ± 5 minutes, and to standing was 17.7 ± 4 minutes. Median number of attempts to stand was two (range of one to four). Postoperative pain was mild to moderate. Conclusions—Detomidine-butorphanol-propofol provided good anesthesia for carotid artery translocation and neutering in goats. Clinical Relevance—Detomidine-butorphanol-propofol anesthesia with oxygen insufflation may be safely used for surgical intervention in healthy goats.  相似文献   
18.
Objective—To determine the neuromuscular effects of doxacurium chloride and to construct a dose-response curve for the drug in isoflurane-anesthetized dogs. Design—Randomized, controlled trial. Animals—Six healthy, adult, mixed-breed dogs (five female, one male) weighing 24.8 ° 2.8 kg. Methods—Anesthesia was induced with isoflurane in oxygen and maintained with 1.9% to 2.3% end-tidal isoflurane concentration. Paco2 was maintained between 35 and 45 mm Hg with mechanical ventilation. Mechanomyography was used to quantitate the evoked twitch response of the paw after supramaximal train-of-four stimulation of the superficial peroneal nerve. After baseline values were recorded, the dogs received one of three doses of doxacurium (2.0, 3.5, 4.5 μg/kg of body weight) or a saline placebo intravenously in random order. All dogs received all treatments with at least 7 days between studies. After drug administration, the degree of maximal first twitch depression compared with baseline (T,%) was recorded. Dose-response relations of doxacurium were plotted in log dose-probit format and analyzed by linear regression to determine effective dose (ED50 and ED90) values for doxacurium. Results—The median log dose-probit response curve showed good data correlation (r= .999) with estimates of the ED50 (2.1 μg/kg) and ED90 (3.5 μg/kg) for doxacurium in isoflurane-anesthetized dogs. Mean ± SD values for T1% (first twitch tension compared with baseline) at maximal depression after drug administration, onset (time from drug administration to maximal depression of T1%), duration (time from maximal depression of T1% to 25% recovery of T1%), and recovery (time from 25% to 75% recovery of T1%) times were 92%± 4%, 40 ± 5 minutes, 108 ± 31 minutes, and 42 ± 11 minutes for dogs treated with 3.5 μg/kg of doxacurium and 94%± 7%, 41 ± 8 minutes, 111 ± 33 minutes, and 37 ± 10 minutes for dogs treated with 4.5 μg/kg of doxacurium. Conclusion and Clinical Relevance—We conclude that doxacurium is a long-acting neuromuscular blocking agent with a slow onset of action. Doxacurium can be used to provide muscle relaxation for long surgical procedures in isoflurane-anesthetized dogs. Interpatient variability, particularly of duration of drug action, may exist in the neuromuscular response to the administration of doxacurium in dogs.  相似文献   
19.
Objective —To measure pullout strength of four pin types in avian humeri and tibiotarsi bones and to compare slow-speed power and hand insertion methods.
Study Design —Axial pin extraction was measured in vitro in avian bones.
Animal Population —Four cadaver red-tailed hawks and 12 live red-tailed hawks.
Methods —The pullout strength of four fixator pin designs was measured: smooth, negative profile threaded pins engaging one or two cortices and positive profile threaded pins. Part 1: Pins were placed in humeri and tibiotarsi after soft tissue removal. Part 2: Pins were placed in tibiotarsi in anesthetized hawks using slow-speed power or hand insertion.
Results —All threaded pins, regardless of pin design, had greater pullout strength than smooth pins in all parts of the study ( P < .0001). The cortices of tibiotarsi were thicker than the cortices of humeri ( P < .0001). There were few differences in pin pullout strengths between threaded pin types within or between bone groups. There were no differences between the pullout strength of pins placed by slow-speed power or by hand.
Conclusions —There is little advantage of one threaded pin type over another in avian humeri and tibiotarsi using currently available pin designs. There were few differences in pin pullout strengths between humeri and tibiotarsi bones. It is possible that the ease of hand insertion in thin cortices minimizes the potential for wobbling and therefore minimizes the difference between slow-speed drill and hand insertion methods.
Clinical Relevance —Threaded pins have superior bone holding strength in avian cortices and may be beneficial for use with external fixation devices in birds.  相似文献   
20.
Objective —To evaluate the outcomes and complications in a consecutive series of animals undergoing microvascular reconstructive procedures at two veterinary institutions. Study Design—Retrospective study. Animals or Sample Population—A total of 44 client-owned dogs and one red-necked wallaby. Methods —The medical records of all animals undergoing reconstructive microsurgical procedures at the Western College of Veterinary Medicine and Michigan State University were reviewed. Microvascular flap survival and related complications were described. Statistical analysis was performed to determine the significance of relationships between operative factors and outcome. Results —A total of 57 microvascular procedures were performed on 55 animals. Reconstruction was required after trauma in 42 animals, after ablative cancer surgery in 11 animals and for correction of congenital tissue aplasia in 1 animal. Donor tissues included the superficial cervical cutaneous, medial saphenous fasciocutaneous or musculofasciocutaneous, caudal superficial epigastric cutaneous, trapezius muscle or musculocutaneous, caudal sartorius muscle, latissimus dorsi muscle or musculocutaneous, cranial abdominal myoperitoneal, carpal footpad, digital footpad, and vascularized ulnar bone flaps. A total of 53 of 57 flaps (93%) survived. There was a significant relationship between flap failure and level of assistant surgeon experience (P < .05). Latissimus dorsi flaps were significantly more likely to fail when compared with pooled data from all other flap types (P < .01). Conclusions —The success of microvascular tissue transfer in this case series compares favorably with those reported in human reconstructive microsurgery. Both the primary and assistant surgeon should be practiced in microsurgical technique. Failure of latissimus dorsi flaps was not likely caused by an inherently deficient flap design, but was more likely attributed to the location and severity of trauma at the recipient site, the difficulty in isolating suitable recipient vessels for anastomosis or the absence of a trained assistant surgeon during these procedures. Clinical Relevance —This retrospective study documents the successful application of microvascular technique in a series of clinical cases requiring tissue reconstruction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号