首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1440篇
  免费   43篇
林业   72篇
农学   36篇
基础科学   14篇
  129篇
综合类   252篇
农作物   92篇
水产渔业   59篇
畜牧兽医   715篇
园艺   12篇
植物保护   102篇
  2021年   17篇
  2020年   15篇
  2019年   15篇
  2017年   15篇
  2016年   19篇
  2015年   20篇
  2014年   22篇
  2013年   62篇
  2012年   48篇
  2011年   54篇
  2010年   47篇
  2009年   24篇
  2008年   53篇
  2007年   47篇
  2006年   47篇
  2005年   58篇
  2004年   54篇
  2003年   47篇
  2002年   35篇
  2001年   34篇
  2000年   38篇
  1999年   27篇
  1998年   20篇
  1997年   16篇
  1996年   18篇
  1995年   21篇
  1994年   11篇
  1993年   13篇
  1992年   20篇
  1991年   25篇
  1990年   24篇
  1989年   24篇
  1988年   21篇
  1987年   17篇
  1986年   22篇
  1985年   25篇
  1984年   18篇
  1983年   15篇
  1982年   18篇
  1981年   11篇
  1979年   14篇
  1977年   16篇
  1976年   18篇
  1975年   13篇
  1974年   14篇
  1973年   23篇
  1972年   20篇
  1971年   15篇
  1948年   12篇
  1947年   13篇
排序方式: 共有1483条查询结果,搜索用时 0 毫秒
131.
132.
133.
Imidazolinone-tolerant crops: history, current status and future   总被引:15,自引:0,他引:15  
Imidazolinone herbicides, which include imazapyr, imazapic, imazethapyr, imazamox, imazamethabenz and imazaquin, control weeds by inhibiting the enzyme acetohydroxyacid synthase (AHAS), also called acetolactate synthase (ALS). AHAS is a critical enzyme for the biosynthesis of branched-chain amino acids in plants. Several variant AHAS genes conferring imidazolinone tolerance were discovered in plants through mutagenesis and selection, and were used to create imidazolinone-tolerant maize (Zea mays L), wheat (Triticum aestivum L), rice (Oryza sativa L), oilseed rape (Brassica napus L) and sunflower (Helianthus annuus L). These crops were developed using conventional breeding methods and commercialized as Clearfield* crops from 1992 to the present. Imidazolinone herbicides control a broad spectrum of grass and broadleaf weeds in imidazolinone-tolerant crops, including weeds that are closely related to the crop itself and some key parasitic weeds. Imidazolinone-tolerant crops may also prevent rotational crop injury and injury caused by interaction between AHAS-inhibiting herbicides and insecticides. A single target-site mutation in the AHAS gene may confer tolerance to AHAS-inhibiting herbicides, so that it is technically possible to develop the imidazolinone-tolerance trait in many crops. Activities are currently directed toward the continued improvement of imidazolinone tolerance and development of new Clearfield* crops. Management of herbicide-resistant weeds and gene flow from crops to weeds are issues that must be considered with the development of any herbicide-resistant crop. Thus extensive stewardship programs have been developed to address these issues for Clearfield* crops.  相似文献   
134.
SUMMARY The reproductive findings from a group of nonpregnant mares were studied. Oestrous cycle length averaged 20.6 days (range 13–34) excluding anoestrous periods, or 25 days (31–141) if included. Average oestrus length was 5.7 days (range 1–24) but from February to May it averaged 7.6 days (range 2–24) and from May to November 4.8 days (range 1–10). Seventy-eight per cent of the mares ovulated within 48 hours prior to the end of oestrus, 10% were out of oestrus before ovulation occurred, while 76% of the ovulations occurred between 4 p.m. and 8 a.m. Follicles averaged 45 mm in size the day of ovulation and multiple ovulations occurred 25.5% of the time. Oestrus without associated ovulation was very uncommon in this group of mares, whereas ovulation without oestrus occurred in 6 of the 11 mares, including one mare who ovulated 32 of 34 times without oestrus. The CL were palpable for an average period of 8.9 days (range 1–18). On occasions, a hematoma formed within the ovulation site, reached a size of 10–12 cm in length and persisted beyond the next ovulation without affecting cycle length. Dioestrus averaged 15.4 days (range 6–25) excluding anoestrus, or 19.5 days (range 6–121) if anoestrus was included. Dioestrous ovulations unaccompanied by signs of oestrus and with the cervix pale, tight, dry and sticky occurred in 10 of the 11 mares. The CL formed following dioestrous ovuations were normal, but did not affect cycle length. A syndrome of spontaneous prolongation of the corpus luteum for 2 to 3 months was observed in 6 of the 11 mares. Oestrus was not manifested during this time, but considerable follicular activity and, in some instances, ovulation was observed. Hysterectomised mares and some mares with pyometra had prolonged CL and follicular activity with a few ovulating similar to mares with spontaneously-prolonged CL. Other mares with pyometra had normal cyclic ovarian activity. Evidence suggests that the endometrium had been destroyed by the infection in the anoestrus mares with pyometra and, thus, was incapable of forming and/or releasing luteolytic factors. Experimental intrauterine inoculation of Streptococcus zooepidemicus during dioestrus reduced oestrous cycle length in 5 of 7 inoculations, whereas inoculations during oestrus failed to alter cycle length.  相似文献   
135.
136.
137.
138.
139.
140.
The efficacy of tulathromycin in the treatment (phase 1) and prevention (phase 2) of bovine respiratory disease (BRD) was evaluated on commercial farms in France, Germany, Italy, and Spain. In phase 1, commingled cattle with clinical BRD were treated with tulathromycin (n = 128) or florfenicol (n = 125) on day 0. Similar percentages of animals showed sustained clinical improvement at day 14 (tulathromycin 83.3% versus florfenicol 81.0%) and had not relapsed by day 60 (tulathromycin 63.3% versus florfenicol 58.4%). In phase 2, healthy in-contact cattle were treated with tulathromycin (n = 492), tilmicosin (n = 494), or saline (n = 265) on day 0. Significantly more (P = .0001) tulathromycin-treated cattle remained healthy to day 14 (92.4%) than tilmicosin-treated (83.7%) or saline-treated (63.7%) cattle, and this was maintained through day 60 (tulathromycin 85.4% versus tilmicosin 75.1% and saline 56.2%). Tulathromycin was highly effective in the treatment and prevention of BRD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号