首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24679篇
  免费   543篇
  国内免费   50篇
林业   4098篇
农学   1671篇
基础科学   214篇
  4196篇
综合类   1310篇
农作物   2506篇
水产渔业   2403篇
畜牧兽医   5041篇
园艺   1224篇
植物保护   2609篇
  2023年   80篇
  2022年   144篇
  2021年   264篇
  2020年   251篇
  2019年   327篇
  2018年   2927篇
  2017年   2906篇
  2016年   1476篇
  2015年   284篇
  2014年   336篇
  2013年   494篇
  2012年   1266篇
  2011年   2622篇
  2010年   2343篇
  2009年   1515篇
  2008年   1723篇
  2007年   1982篇
  2006年   413篇
  2005年   454篇
  2004年   432篇
  2003年   448篇
  2002年   401篇
  2001年   248篇
  2000年   284篇
  1999年   205篇
  1998年   59篇
  1997年   57篇
  1996年   55篇
  1995年   53篇
  1994年   38篇
  1993年   50篇
  1992年   87篇
  1991年   52篇
  1990年   62篇
  1989年   71篇
  1988年   71篇
  1987年   52篇
  1986年   47篇
  1985年   58篇
  1984年   37篇
  1983年   42篇
  1982年   30篇
  1980年   23篇
  1979年   37篇
  1978年   21篇
  1977年   23篇
  1974年   23篇
  1973年   25篇
  1972年   26篇
  1970年   26篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
New applications call for many new requirements. In order to improve the toughness of aldehyde hyaluronic acid (A-HA) and adipic acid dihydrazide (ADH) hydrogel, the poly(ethylene glycol) (PEG) was added. PEG content and molecular weight have little effect on the gelation time, and the composite hydrogels can form in situ within 20 seconds at room temperature. The press test showed that the hydrogels containing PEG possessed a better compression resistance, after pressed more than five times, the composite hydrogels could restore. Rheological properties were measured to evaluate the working ability and the effect of PEG on hydrogels. By analyzing the shear viscosity (η γ=0.01), yield stress (σ 0) and threshold shear stress (σ c ), the addition of PEG can make the structure of composite hydrogels get loose and improve the shear resistance. Especially, PEG800 can enhance the antishear ability obviously. The amplitude sweep tests showed a broad linear viscoelastic region, indicating a wide processing range. In the meanwhile, we also found that PEG can improve the optical transmittance of xerogel evidently.  相似文献   
102.
Building proton transfer channel is an important strategy to optimize the proton transfer process of the proton exchange membrane (PEM). In this work, sulfonated pre-oxidized nanofibers were prepared by solution blowing of polyacrylonitrile (PAN) nanofibers followed by pre-oxidization and sulfonating, and the nanofibers were composited with SPEEK to enhance its performance as PEM. The results of the proton conductivity verified that the employment of sulfonated pre-oxidized nanofibers improved the proton conductivity. Meanwhile, the introduction of the sulfonated pre-oxidized nanofibers realized the upgrades of the thermostability and water absorbency of the membrane, and led to the decrease of the swelling property and methyl alcohol’s permeability of the material. It is indicated that the composite membrane is promising materials for PEM fuel cells.  相似文献   
103.
The objective of this research was to survey the effects of starch quaternization and sulfosuccinylation on the adhesion of cold starch paste to raw cotton fibers for cotton warp sizing at low temperature. Acid-thinned cornstarch (ATS) was quaternized and then sulfosuccinylated to introduce 3-(trimethylammonium chloride)-2-hydroxypropyl and sulfosuccinate substituents onto its backbones. The electroneutrality of starch samples prepared was achieved by maintaining a constant mole ratio (5.3:1) of the two substituents. A series of electroneutral cornstarch (ECS) samples with different levels of the substituents were derived by altering the feed ratio of the modifying reagents to starch for determining desirable level of starch modification. Adverse influences of cotton wax and starch retrogradation on the adhesion of cold starch paste to raw cotton fibers were evaluated to illustrate the effectiveness of starch quaternization and sulfosuccinylation. It was found that the modification was able to alleviate the adverse influence of starch retrogradation and ameliorate the adhesion to the fibers at low temperature. Higher level of the modification led to less retrogradation and resulted in strong adhesion. Furthermore, the adverse influence of cotton wax on the adhesion could be eliminated after a pre-wetting treatment of raw cotton warps with hot water. The adhesion of ECS paste to raw cotton at 60 °C was statically the same as that of ATS at 95 °C when total DS of ECS was 0.0443 or higher.  相似文献   
104.
Wool fabric was treated with liquid ammonia at -40 °C for 30 and 60 s prior to the application of polypyrrole (PPy). The polymer was deposited on wool fiber using the chemical oxidation method with 0.02 and 0.05 mol/l (Py) monomer concentration and FeCl3 as a catalyst. Functional groups of wool samples were analyzed using FT-IR, and surface morphology was investigated using SEM micrographs. Properties such as water absorbency, surface resistivity, abrasion resistance, weight add-on, and air permeability of coated specimens were explored. The FT-IR outcomes revealed the liquid ammonia pre-treatment changed the amount of amide I (NH), cystic acid, cystic monoxide, and dioxide content of the fiber. SEM micrographs revealed the descaling of wool surface after pre-treatment and smooth coating of polymer. Pre-treatment of wool in liquid ammonia improved absorbency of wool fabric with respect to the treatment duration. The surface resistivity of wool fabric decreased with the increase of monomer concentration and pre-treatment duration. The results of abrasion resistance confirmed that the pre-treated fabric exhibited lower loss of polymer after 200 cycles of abrasion. The weight of the fabric was increased and air permeability decreased when the monomer concentration and liquid ammonia pre-treatment duration was increased.  相似文献   
105.
This work investigated the effects of date palm leaf fiber (DPLF) content on the thermal and tensile properties; and morphology of compatibilized polyolefin ternary blend. Recycled polyolefin ternary blend consisting of low density polyethylene (RLDPE), high density polyethylene (RHDPE) and polypropylene (RPP) were fabricated at different parts per hundred resin (phr) of DPLF. Maleic anhydride grafted polyethylene (MAPE) was used as compatibilizer to enhance the adhesion between filler and polymer matrix. The composites were prepared using melt extrusion and tests samples were produced via injection molding process. Thermal conductivity results showed that as much as 11 % reduction in thermal conductivity was achieved with the incorporation of 30 phr DPLF. Highest tensile strength was observed with the incorporation of 10 phr DPLF. The elongation at break was reduced with the addition of DPLF due to impediment of chain mobility by the fillers. Initial degradation temperature increased with the addition of DPLF. Hence, it is concluded that DPLF can be used to develop green and thermally insulating composites. It is hoped that the present results will stimulate further studies on the thermally insulative materials based on natural fibers reinforced polymer composites for applications in the building industries.  相似文献   
106.
Surface properties of fibrous and ground cotton and linen were investigated by inverse gas chromatography (IGC) and the contact angle with different liquids was also measured on fabrics composed of both fibers. Results proved that dispersion component of surface tension (γ s d ) determined by IGC depends not only on the surface energy, but also on several factors influencing the adsorbability of probe molecules on the cellulosic substrates. For cotton samples, the trapping of n-alkanes among waxy molecules in the outer layer of fibers can be presumed. This effect results in larger γ s d for cotton fibers than for linen in spite of the higher wettability of the linen fabrics. Besides the surface energy and trapping effects, the grinding also influences the γ s d values. Specific enthalpy of adsorption (ΔH A ab ) of polar probes could be determined on all linen samples, but only on the ground cotton sample. Lewis acid-base character calculated for linen and ground cotton samples depends on the same effects as the γ s d does. The similar ΔH A ab values of chloroform (acidic) and THF (basic) measured on each of the samples support the conclusion that the surface character is amphoteric, which is also proved by the high ΔH A ab values of the amphoteric ethyl acetate and acetone probes.  相似文献   
107.
Polyvinylidene fluoride (PVdF) membranes in spite of having many critical properties necessary for lithium-ion batteries, do not have satisfying thermal and mechanical resistance. The goal of this study was to combine the good mechanical and thermal properties of PP nonwoven fabric with the excellent electrochemical properties of PVdF nanofibers to exploit a high-performance membrane for lithium-ion batteries. This work reports the preparation of PVdF nanofiber membranes using electrospinning on a polypropylene (PP) spunbonded nonwoven fabric and an aluminum foil followed by a hot-pressing treatment. The morphology and size of the membranes were studied by the scanning electron microscopy. The tensile strength of the membrane with the PP support was superior to the PVdF membrane. Thermal stability of the prepared membranes was determined using the TGA method and the dimensional stability was investigated by measuring the shrinkage ratio at 105 °C. The results have shown that the PVdF/PP membrane was thermally more stable than the PVdF and the commercial Celgard 2325 membranes. The batteries using PVdF/PP membrane exhibited higher electrochemical oxidation limit, better cycling performance and less discharge capacity fading during 100 cycles compared to PVdF and Celgard membranes. The results of this study showed that PVdF/PP membrane is a promising advanced membrane in lithium-ion batteries.  相似文献   
108.
Statistical copolymers of 2-hydroxy-3-benzophenoxy propyl methacrylate (HBPPMA) and benzyl methacrylate (BzMA) in different feed ratios were synthesized by free radical copolymerization method at 60 °C in presence of AIBN initiator. The compositions of copolymer were estimated from 1H-NMR technique. The monomer reactivity ratios of HBPPMA and BzMA were calculated as r1 (rHBPPMA)=0.51±0.076 and r2 (rBzMA)=1.07±0.140 for Kelen-Tüdos method, and was estimated as r1=0.37±0.0006 and r2=0.64±0.0485 according to Fineman Ross equation. The average values estimated from the two methods showed that monomer reactivity ratio of benzyl methacrylate was a slightly high in comparison to HBPPMA. The copolymer system showed an azeotropic point, which is equal to M BzMA =m BzMA =0.43. DSC measurements showed that the Tg’s of poly(HBPPMA) and poly(BzMA) were 84 °C and 73 °C, respectively. The Tg in the copolymer system decreased with increase in benzyl methacrylate content. The decomposition temperature of poly(BzMA) and poly(HBPPMA) occurs in a single stage at about 207 °C and 260 °C, respectively. Those of HBPPMA-BzMA copolymer systems are between decomposition temperatures of two homopolymers. The dielectric constant, dielectric loss factor and electrical conductivity were investigated depend on the frequency of the copolymers. The highest dielectric constants depending on all the studied frequencies were recorded for the poly(HBPPMA) and the copolymer containing the highest HBPPMA unit. The dielectric constant for P(HBPPMA) and P(BzMA) at 1 kHz are 6.56 and 3.22, respectively. Also, those of copolymer systems were estimated between these two values. Similarly, poly(HBPPMA) and copolymers, which are prepared under the same conditions show the dissipation factor and conductivity as well.  相似文献   
109.
Madder is a natural colorant which is commonly applied with metal salts as a mordant to improve its affinity to fibers and color fastness. Madder produces an insoluble complex or lake in the presence of metal ions on mordanted fabric. In this study, wool fabric was pretreated with AgNPs (silver nanoparticles) as a mordant, then dyed with madder. The wool fabric samples were examined by scanning electron microscopy (SEM) and their colorimetric characteristics were evaluated. The formation of spherical silver nanoparticle was confirmed using UV-Visible spectroscopy, SEM images, and elemental analysis. The average size of synthesized silver nanoparticles on the surface of wool fibers is around 73 nm. The dyed wool samples were pretreated with different concentration of Ag+ ions or AgNPs, which showed higher color strength value compared to untreated dyed wool fabric. This pretreatment also presented good antibacterial activity.  相似文献   
110.
Poly(2-hydroxyethylmethacrylate) (PHEMA)/hydroxyapatite (HAP) nanocomposites were synthesized through a new route involving nano-sized HAP (nHAP) particles or modified nHAP mixed with monomer 2-hydroxyethylmethacrylate via in situ polymerization in supercritical carbon dioxide (scCO2). Fourier-transform infrared spectroscopy showed phosphate peak increased with nHAP content in composite. X-ray diffraction patterns of PHEMA/nHAP revealed the presence of crystallized nHAP. Thermogravimetric analysis showed that the ultimate nHAP content in PHEMA/nHAP composites is consistent with its initial amount. Scanning electron microscopy revealed that nanocomposite particles are much smaller than PHEMA particles. PHEMA/nHAP composites with average diameter of approximately 600 nm were obtained in scCO2 with 94 % yield. Mechanical properties of PHEMA/nHAP nanocomposites were better than those of PHEMA, and compressive modulus and strength of composites with 30 wt.% nHAP were 193 and 29 MPa, respectively. Nanocomposite adsorption toward bovine serum albumin was evaluated, and results indicated that analyte adsorption amount can reach up to 282 mg/g.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号