首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   5篇
林业   4篇
农学   3篇
  7篇
综合类   6篇
农作物   3篇
水产渔业   2篇
畜牧兽医   28篇
园艺   1篇
植物保护   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2015年   2篇
  2014年   4篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2006年   6篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1982年   1篇
  1973年   1篇
排序方式: 共有56条查询结果,搜索用时 46 毫秒
31.
32.
The aims of this study were to: (i) assess the impact of hay and fertilizer application on organic matter (OM) fractions (dissolved organic matter (DOM), light fraction organic matter (LFOM, <1.0 g cm−3), heavy fraction OM (HFOM, <1.7 g cm−3)), carbon (C) and nitrogen (N) cycling processes and microbial community size and structure, and (ii) quantify the role of OM fractions to C and N cycling. Soil was collected in 2001 from a field experiment to which grass hay (1996) and/or fertilizer (1995 and 1999) had previously been applied. DOM-C (P<0.05) and DOM-N (P=0.07) were significantly higher in control and fertilized soil than hay and hay+fertilized soil. LFOM and HFOM C and N contents and C/N ratios were significantly (P<0.05) higher in hay+fertilized and hay amended soil than in control and fertilized soil. Potentially mineralizable-N (PMN), microbial biomass-C (MB-C), microbial biomass-N (MB-N) and microbial respiration (CO2) were not affected by fertilizer and/or hay application. Gross N mineralization (Gross Min) and gross nitrification (Gross Nit) rates were significantly (P<0.05) higher in fertilized, hay, hay+fertilized soil than control soil. However, there was no significant difference between treatments in gross N immobilization rates. Results reported here highlight the importance of a labile fraction of the DOM pool to N and C cycling as its removal significantly (P<0.05) reduced PMN, MB-N, Gross Min and Gross Nit compared with whole soil in most or all treatments. In soil where DOM+LFOM were removed PMN was significantly (P<0.05) lower, but MB-C, Gross Min and Gross Nit was significantly (P<0.05) higher than in DOM removed soil. This suggests that LFOM plays an important role as a sink for mineral-N. Total soil phospholipid fatty acid (PLFA) concentration was significantly (P<0.05) higher in hay amended than control, fertilized and hay+fertilized soil. Principal components analysis was able to clearly discriminate between control, fertilized, hay+fertilized and hay amended soil. Soil amended with hay or fertilizer had a microbial community structure which differed from that of the control or hay+fertilized soils. Redundancy analysis with Monte Carlo permutation tests revealed that PLFA profiles were strongly correlated to differences in Gross Min, Gross Nit, MB-N, MB-C, MB-C/N ratio, total soil C and total soil C/N ratio. The results of this research suggest that changes in microbial structure are related to aspects of soil C and N pools and cycling.  相似文献   
33.
We conducted a laboratory incubation of forest (Scots pine (Pinus sylvestris) or beech (Fagus sylvatica)), grassland (Trifolium repens/Lolium perenne) and arable (organic and conventional) soils at 5 and 25 °C. We aimed to clarify the mechanisms of short-term (2-weeks) nitrogen (N) cycling processes and microbial community composition in relation to dissolved organic carbon (DOC) and N (DON) availability and selected soil properties. N cycling was measured by 15N pool dilution and microbial community composition by denaturing gradient gel electrophoresis (DGGE), phospholipid fatty acid (PLFA) and community level physiological profiles (CLPP). Soil DOC increased in the order of arable<grassland<forest soil while DON and gross N fluxes increased in the order of forest<arable<grassland soil; land use had no affect on respiration rate. Soil DOC was lower, while respiration, DON and gross N fluxes were higher at 25 than 5 °C. Gross N fluxes, respiration and bacterial biomass were all positively correlated with each other. Gross N fluxes were positively correlated with pH and DON, and negatively correlated with organic matter, fungal biomass, DOC and DOC/DON ratio. Respiration rate was positively correlated with bacterial biomass, DON and DOC/DON ratio. Multiple linear modelling indicated that soil pH, organic matter, bacterial biomass, DON and DOC/DON ratio were important in predicting gross N mineralization. Incubation temperature, pH and total-C were important in predicting gross nitrification, while gross N mineralization, gross nitrification and pH were important in predicting gross N immobilization. Permutation multivariate analysis of variance indicated that DGGE, CLPP and PLFA profiles were all significantly (P<0.05) affected by land use and incubation temperature. Multivariate regressions indicated that incubation temperature, pH and organic matter content were important in predicting DGGE, CLPP and PLFA profiles. PLFA and CLPP were also related to DON, DOC, ammonium and nitrate contents. Canonical correlation analysis showed that PLFA and CLPP were related to differences in the rates of gross N mineralization, gross nitrification and soil respiration. Our study indicates that vegetation type and/or management practices which control soil pH and mediate dissolved organic matter availability were important predictors of gross N fluxes and microbial composition in this short-term experiment.  相似文献   
34.
We examined effects of wetting and then progressive drying on nitrogen (N) mineralization rates and microbial community composition, biomass and activity of soils from spinifex (Triodia R. Br.) grasslands of the semi-arid Pilbara region of northern Australia. We compared soils under and between spinifex hummocks and also examined impacts of fire history on soils over a 28 d laboratory incubation. Soil water potentials were initially adjusted to −100 kPa and monitored as soils dried. We estimated N mineralization by measuring changes in amounts of nitrate (NO3-N) and ammonium (NH4+-N) over time and with change in soil water potential. Microbial activity was assessed by amounts of CO2 respired. Phospholipid fatty acid (PLFA) analyses were used to characterize shifts in microbial community composition during soil drying. Net N mineralized under hummocks was twice that of open spaces between hummocks and mineralization rates followed first-order kinetics. An initial N mineralization flush following re-wetting accounted for more than 90% of the total amount of N mineralized during the incubation. Initial microbial biomass under hummocks was twice that of open areas between hummocks, but after 28 d microbial biomass was<2 μ g−1 ninhydrin N regardless of position. Respiration of CO2 from soils under hummocks was more than double that of soils from between hummocks. N mineralization, microbial biomass and microbial activity were negligible once soils had dried to −1000 kPa. Microbial community composition was also significantly different between 0 and 28 d of the incubation but was not influenced by burning treatment or position. Regression analysis showed that soil water potential, microbial biomass N, NO3-N, % C and δ15N all explained significant proportions of the variance in microbial community composition when modelled individually. However, sequential multiple regression analysis determined only microbial biomass was significant in explaining variance of microbial community compositions. Nitrogen mineralization rates and microbial biomass did not differ between burned and unburned sites suggesting that any effects of fire are mostly short-lived. We conclude that the highly labile nature of much of soil organic N in these semi-arid grasslands provides a ready substrate for N mineralization. However, process rates are likely to be primarily limited by the amount of substrate available as well as water availability and less so by substrate quality or microbial community composition.  相似文献   
35.
Within a polymer film, free-volume elements such as pores and channels typically have a wide range of sizes and topologies. This broad range of free-volume element sizes compromises a polymer's ability to perform molecular separations. We demonstrated free-volume structures in dense vitreous polymers that enable outstanding molecular and ionic transport and separation performance that surpasses the limits of conventional polymers. The unusual microstructure in these materials can be systematically tailored by thermally driven segment rearrangement. Free-volume topologies can be tailored by controlling the degree of rearrangement, flexibility of the original chain, and judicious inclusion of small templating molecules. This rational tailoring of free-volume element architecture provides a route for preparing high-performance polymers for molecular-scale separations.  相似文献   
36.
37.
The osteopontin gene may influence the fertility of water buffaloes because it is a protein present in sperm. The aim of this work was to identify polymorphisms in this gene and associate them with fertility parameters of animals kept under extensive grazing. A total of 306 male buffaloes older than 18 months, from two farms, one in the state of Amapá and the other in the state of Pará, Brazil were used in the study. Seven SNPs were identified in the regions studied. The polymorphisms were in gene positions 1478, 1513 and 1611 in the region 5′upstrem and positions 6690, 6737, 6925 and 6952 in the region amplified in intron 5. The SNPs were associated with the traits, namely scrotal circumference, scrotal volume, sperm motility, sperm concentration and sperm pathology. There were significant SNPs (p < 0.05) for all the traits. The SNP 6690 was significant for scrotal circumference, sperm concentration, sperm motility and sperm pathology and the SNP 6737 for scrotal volume. The genotype AA of SNP 6690 presented the highest averages for scrotal circumference, sperm concentration and motility and the lowest total number of sperm pathologies. For the scrotal volume trait, the animals with the largest volume were correlated with the presence of the genotype GG of SNP 6737. These results indicate a significance of the osteopontin gene as it seems to exert a substantial influence on the semen production traits of male buffaloes.  相似文献   
38.
The efficacy of three commercial Mycoplasma gallisepticum (MG) immunizing agents-a bacterin, a recombinant fowlpox-MG vaccine, and a live F-strain vaccine-was compared in specific-pathogen-free hens in egg production. Three groups of 25 chickens were vaccinated with one of the vaccines at 10 wk of age and 25 birds were not vaccinated. At 25 wk of age (and approximately 50% egg production), 20 birds from each of the three vaccinated groups and 15 nonvaccinated controls were challenged with virulent R-strain via aerosol; the birds were necropsied and evaluated at 10 days post-challenge. The MG bacterin and live F-strain vaccinations were both protective and resulted in significant differences in air sac lesions, tracheal lesions, and ovarian regression compared to the nonvaccinated controls and the recombinant fowlpox-MG vaccine (P < or = 0.05). The evaluation of ovarian regression is a useful method of testing the efficacy of MG vaccines in laying hens.  相似文献   
39.
Multiple Trichinella species are reported from the Australasian region although mainland Australia has never confirmed an indigenous case of Trichinella infection in humans or animals. Wildlife surveys in high-risk regions are essential to truly determine the presence or absence of Trichinella, but in mainland Australia are largely lacking. In this study, a survey was conducted in wild pigs from mainland Australia's Cape York Peninsula and Torres Strait region for the presence of Trichinella, given the proximity of a Trichinella papuae reservoir in nearby PNG. We report the detection of a Trichinella infection in a pig from an Australian island in the Torres Strait, a narrow waterway that separates the islands of New Guinea and continental Australia. The larvae were characterised as T. papuae (Kikori strain) by PCR and sequence analysis. No Trichinella parasites were found in any pigs from the Cape York Peninsula. These results highlight the link the Torres Strait may play in providing a passage for introduction of Trichinella parasites from the Australasian region to the Australian mainland.  相似文献   
40.
We studied the effect of no-till (disc seeder), conventional-till (tine scarifier+disc seeder) and rotary-till (rotary hoe+disc seeder) management on soil organic matter (SOM) components, rates of carbon (C) and nitrogen (N) cycling, substrate utilization and microbial community composition. We hypothesized that labile SOM fractions are sensitive to changes in tillage techniques and, in turn mediate any tillage-induced changes in microbial function and composition. A replicated field site was established in May 1998 in the semi-arid agricultural region of Western Australia and soils were collected in September 2004. We found soil pH varied between different tillage techniques as an initial lime application was mixed to deeper soil depths in rotary-till soil than no-till and conventional-till soil. Total-C was greater in surface soil and lower in subsurface soil from no-till and conventional-till plots than from rotary-till plots, but there was no effect of tillage technique on total-C when averaged across soil depths. Light (specific density <1.0 g cm?3) fraction organic matter (LFOM), dissolved organic matter (DOM) and microbial biomass (MB) C and N pools, and rates of C and N cycling all tended to decrease with soil depth. In general, LFOM-C and N, dissolved organic C (DOC) and microbial biomass carbon (MB-C), soil respiration, cellulase activity, gross immobilization rates were positively correlated (r>0.50) and were greater in no-till and conventional-till soil than rotary-till soil both within, and across soil depths. These soil variables generally increased (r>0.5) with increasing soil pH. Dissolved organic N and gross N mineralization were positively correlated (r>0.90) but neither was affected by tillage techniques. No-till soil had greater utilization of carboxylic acids and lower utilization of amino acids and carbohydrates than conventional-till and rotary-till soil; surface soil also had greater utilization of carboxylic acids than subsurface soil. In turn, substrate utilization differed between soil depths, and between no-till soil and conventional-till and rotary-till soil; these differences were correlated with soil pH, total-N, DOC, LFOM-N and microbial biomass nitrogen (MB-N). Bacterial and fungal biomasses generally decreased with soil depth and were greater in no-till and conventional-till soil than rotary-till soil. Microbial community composition differed between all tillage techniques and soil depths; these differences were correlated with soil textural classes, soil pH, and total, LFOM, DOM and microbial C and N pools. These results indicate that most tillage-induced changes to soil properties were associated with the greater soil disturbance under rotary-till than under no-till or conventional-till management. Our results indicate that tillage-induced changes to soil pH, and LFOM, DOM and microbial biomass pools are likely to be important regulators of the rates of C and N cycling, substrate utilization and microbial community composition in this coarse textured soil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号