首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   1篇
林业   2篇
农学   15篇
  20篇
农作物   1篇
水产渔业   14篇
畜牧兽医   54篇
园艺   4篇
植物保护   11篇
  2023年   1篇
  2022年   4篇
  2021年   4篇
  2020年   3篇
  2016年   3篇
  2015年   8篇
  2014年   14篇
  2013年   8篇
  2012年   8篇
  2011年   4篇
  2010年   6篇
  2009年   5篇
  2008年   7篇
  2007年   7篇
  2006年   6篇
  2005年   7篇
  2004年   4篇
  2003年   4篇
  2002年   6篇
  2001年   3篇
  2000年   4篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1991年   1篇
排序方式: 共有121条查询结果,搜索用时 46 毫秒
71.
72.
The characteristics of Cs accumulation and localization in edible mushrooms were examined using the mycelia of Pleurotus ostreatus-Y1. Scanning electron microscope images revealed the existence of white spots, and energy dispersive X-ray microanalyzer analysis indicated the presence of larger amounts of Cs and P in these spots in mycelia cultured on medium containing 25 mM CsCl. The (137)Cs activities in the mycelia were approximately 4-6 times higher than those in water used for (137)Cs elution. Higher Cs concentrations in the sediment fraction including vacuolar pellets were obtained compared to the upper fractions. It was observed that yellowish spots caused by the fluorescence of 4',6-diamidino-2-phenylindole (DAPI)-stained polyphosphate were localized in the mycelia. The higher fluorescence intensity of the yellowish-grained spots was measured in comparison with other regions in the mycelium. These results suggested that Cs in the mycelia was trapped by polyphosphate in vacuoles or other organelles.  相似文献   
73.
Gametophytic self-incompatibility in Japanese pear (Pyrus pyrifolia Nakai) is controlled by the single, multi-allelic S-locus. Information about the S-genotypes is important for breeding and the selection of pollen donors for fruit production. Rapid and reliable S-genotype identification system is necessary for efficient breeding of new cultivars in Japanese pear. We designed S allele-specific PCR primer pairs for ten previously reported S-RNase alleles (S1S9 and Sk) as simple and reliable method. Specific nucleotide sequences were chosen to design the primers to amplify fragments of only the corresponding S alleles. The developed primer pairs were evaluated by using homozygous S-genotypes (S1/S1S9/S9 and S4sm/S4sm) and 14 major Japanese pear cultivars, and found that S allele-specific primer pairs can identify S-genotypes effectively. The S allele-specific primer pairs developed in this study will be useful for efficient S-genotyping and for marker-assisted selection in Japanese pear breeding programs.  相似文献   
74.
ABSTRACT: A novel sulfotransferase (O-ST), which transferred the sulfate group of 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to O-22 of 11-α,β-hydroxy saxitoxin (STX) and produced GTX2 + 3, was purified to homogeneity from the cytosolic fraction of clonal-axenic vegetative cells of the toxic dinoflagellate Gymnodinium catenatum GC21V. After four purification steps, including affinity chromatography and anion exchange chromatography, the enzyme was purified 500-fold and the yield was 4%. On affinity chromatography with a PAP-agarose column, O-ST was observed in the bound fraction, and N-ST specific to N-21 of STX and GTX2 + 3 was found in the unbound fraction. The molecular mass of the purified enzyme was determined by sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) to be 65 kDa. Gel filtration chromatography showed a native molecular mass of 67 kDa, indicating that O-ST is a monomeric enzyme. The enzyme was optimally active at pH 6.0 and 35°C. O-ST did not require metal cations for its activity. O-ST required PAPS as the sole source of sulfate. O-ST transferred a sulfate group from PAPS to only O-22 of 11-α,β-hydroxy STX and not to N-21 of these toxins. These observations suggested that two ST, N-ST and O-ST, participate in the sulfation of PSP toxins.  相似文献   
75.
Sulfonylurea-resistant biotypes of Schoenoplectus juncoides were collected from Nakafurano, Shiwa, Matsuyama, and Yurihonjyo in Japan. All of the four biotypes showed resistance to bensulfuron-methyl and thifensulfuron-methyl in whole-plant experiments. The growth of the Nakafurano, Shiwa, and Matsuyama biotypes was inhibited by imazaquin-ammonium and bispyribac-sodium, whereas the Yurihonjyo biotype grew normally after treatment with these herbicides. The herbicide concentration required to inhibit the acetolactate synthase (ALS) enzyme by 50% (I50), obtained using in vivo ALS assays, indicated that the four biotypes were > 10-fold more resistant to thifensulfuron-methyl than a susceptible biotype. The Nakafurano, Shiwa, and Matsuyama biotypes exhibited no or little resistance to imazaquin-ammonium, whereas the Yurihonjyo biotype exhibited 6700-fold resistance to the herbicide. The Nakafurano and Shiwa biotypes exhibited no resistance to bispyribac-sodium, but the Matsuyama biotype exhibited 21-fold resistance and the Yurihonjyo biotype exhibited 260-fold resistance to the herbicide. Two S. juncoides ALS genes (ALS1 and ALS2) were isolated and each was found to contain one intron and to encode an ALS protein of 645 amino acids. Sequencing of the ALS genes revealed an amino acid substitution at Pro197 in either encoded protein (ALS1 or ALS2) in the biotypes from Nakafurano (Pro197 → Ser197), Shiwa (Pro197 → His197), and Matsuyama (Pro197 → Leu197). The ALS2 of the biotype from Yurihonjyo was found to contain a Trp574 → Leu574 substitution. The relationships between the responses to ALS-inhibiting herbicides and the amino acid substitutions, which are consistent with previous reports in other plants, indicate that the substitutions at Pro197 and Trp574 are the basis of the resistance to sulfonylureas in these S. juncoides biotypes.  相似文献   
76.
Wheat lines with reduced amylose content were recently produced by single and double mutation from a low‐amylose line, Kanto 107. They are appropriate for clarifying the influence of amylose content on starch gel properties because of their similar genetic background. When measured using the concanavalin A method (ConA), the total amylose content of isolated starches from Kanto 107 and three mutants (K107Afpp4, Tanikei A6599‐4, K107Wx2) was 24.8, 18.5, 7.1, and 1.7%, respectively. Results of differential scanning calorimetry (DSC) showed that the difference in amylose content strongly affected gelatinization conclusion temperature and enthalpy. We prepared 30 and 40% starch gels and measured their dynamic shear viscoelasticity using a rheometer with parallel plate geometry. Compressive and creep‐recovery tests were conducted under uniaxial compression. The storage shear modulus correlated highly with the amylose content of starch in 30 and 40% starch gels. The creep‐recovery test showed a clear distinction in creep curves among starch samples. When the compressive force required for 50, 80, and 95% strains was compared, starch gels with lower amylose content showed lower compressive force at 50% strain. Waxy starch gel (K107Wx2) showed higher compressive force at strain >80% than other samples due to its sticky property.  相似文献   
77.
78.
To survey endophytic actinomycetes as potential biocontrol agents against fungal diseases of rhododendron, young plants of rhododendron were surface-sterilized for use as an isolation source. Nine, six and two isolates, with distinguishing characteristics based on the macroscopic appearance of colonies, were obtained from roots, stems and leaves, respectively, suggesting that various species of actinomycetes grow in the respective organs of this plant as symbionts or parasites. On an agar medium, only isolate R-5 commonly formed a clear growth-inhibition zone against two major fungal pathogens of rhododendron, Phytophthora cinnamomi and Pestalotiopsis sydowiana, indicating that this isolate can produce antifungal material(s). Acetone extracts of a liquid culture of R-5 had a broad antimicrobial spectrum against Gram-positive bacteria, yeast and filamentous fungi. Isolate R-5 was identified as a Streptomyces sp. based on morphological, physiological and chemotaxonomical characteristics. The present results indicate that isolate R-5 is a suitable candidate for the biocontrol of diseases of rhododendron. Received 25 March 2000/ Accepted in revised form 18 May 2000  相似文献   
79.
Abstract

Arsenic extractability with various solutions from peat samples collected in Deuli Village, Bangladesh, was investigated to reveal the leaching mechanisms of arsenic in sediments to groundwater. Peat layer was distributed at the depth of 7–8 m in the sediments, and the peat samples collected and used in this experiment contained 137 mg kg?1 arsenic. A wide range of pH values and concentrations of phosphoric acid and trisodium citrate was used for the extracting solutions. Arsenic extractability with Hel (25–1,000 mM) or NaOH (20–500 mM) at different pH values ranged for 30 to 60% in strong acid or alkali, while was less than 0.1% in the neutral pH range against the total content. Extraction of arsenic with 100 mM phosphoric acid and 100 mM trisodium citrate was about 20% even at a neutral pH, while the extractability with these solutions at concentrations below 1 mM was similar to that with distilled water. These results suggest that competitive exchange and / or chelating action are / is the prior possible mechanism for arsenic leaching from peat. However, the experimental conditions such as pH value or phosphate anion concentration differed from those in the study area where the pH of groundwater was almost neutral and the phosphate anion concentration was only 0.01 mM. Moreover, since the experiment was conducted using a batch system under oxidative conditions and not using a continuous flow system, the importance of the oxidation-reduction potential in the sediments and organic matter content in the groundwater should be investigated.  相似文献   
80.
To elucidate the regulatory mechanisms of carotenogenesis in Japanese apricot (Prunus mume Siebold & Zucc.), the relationships between carotenoid accumulation and the expression of the carotenogenic genes, phytoene synthase (PmPSY-1), phytoene desaturase (PmPDS), zeta-carotene desaturase (PmZDS), lycopene beta-cyclase (PmLCYb), lycopene epsilon-cyclase (PmLCYe), beta-carotene hydroxylase (PmHYb), and zeaxanthin epoxidase (PmZEP), were analyzed in two cultivars with different ripening traits, 'Orihime' and 'Nanko.' In 'Orihime' fruits, large amounts of carotenoids accumulated on the tree, concomitant with the induction of PmPSY-1 and the downstream carotenogenic genes PmLCYb, PmHYb, and PmZEP. In 'Nanko' fruits, carotenoids accumulated mainly after harvest, correlating with an appreciable induction of PmPSY-1 expression, but the downstream genes were not notably induced, which may explain the lower total carotenoid content in 'Nanko' than in 'Orihime.' In both cultivars, a decrease in PmLCYe expression and increased or constant PmLCYb expression could cause the metabolic shift from beta,epsilon-carotenoid synthesis to beta,beta-carotenoid synthesis that occurs as ripening approaches. Next, the effects of ethylene on the expression of PmPSY-1 and carotenoid accumulation were investigated in 'Nanko' fruits treated with propylene or 1-methylcyclopropene (1-MCP). Propylene treatment induced both ethylene production and carotenoid accumulation. PmPSY-1 was constitutively expressed, but propylene treatment accelerated its induction. 1-MCP treatment caused a slight inhibition of carotenoid accumulation along with the repression, although not complete, of PmPSY-1. Collectively, although PmPSY-1 expression was not exclusively regulated by ethylene, both the notable induction of PmPSY-1 accelerated by ethylene and the subsequent induction of the downstream carotenogenic genes, especially PmLCYb, could be necessary for the massive carotenoid accumulation that occurs during ripening. Furthermore, the switch from PmLCYe expression to PmLCYb expression could cause beta,beta-carotenoid accumulation in both Japanese apricot cultivars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号