首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63802篇
  免费   2969篇
  国内免费   44篇
林业   2575篇
农学   1670篇
基础科学   442篇
  6373篇
综合类   14969篇
农作物   2510篇
水产渔业   2424篇
畜牧兽医   31625篇
园艺   687篇
植物保护   3540篇
  2017年   578篇
  2016年   564篇
  2014年   569篇
  2013年   1931篇
  2012年   1269篇
  2011年   1526篇
  2010年   977篇
  2009年   916篇
  2008年   1525篇
  2007年   1480篇
  2006年   1463篇
  2005年   1472篇
  2004年   1389篇
  2003年   1463篇
  2002年   1440篇
  2001年   1510篇
  2000年   1490篇
  1999年   1221篇
  1998年   549篇
  1997年   551篇
  1995年   600篇
  1994年   581篇
  1993年   570篇
  1992年   1318篇
  1991年   1398篇
  1990年   1455篇
  1989年   1501篇
  1988年   1403篇
  1987年   1366篇
  1986年   1406篇
  1985年   1378篇
  1984年   1155篇
  1983年   1015篇
  1982年   721篇
  1981年   691篇
  1980年   648篇
  1979年   1132篇
  1978年   922篇
  1977年   825篇
  1976年   771篇
  1975年   863篇
  1974年   1130篇
  1973年   1065篇
  1972年   1132篇
  1971年   1084篇
  1970年   1022篇
  1969年   876篇
  1968年   713篇
  1967年   844篇
  1966年   695篇
排序方式: 共有10000条查询结果,搜索用时 828 毫秒
991.
天然打草场是中国草地畜牧业的物质基础,也是中国内陆的生态屏障。目前中国打草场分布状况、分布面积、产量高低等信息十分缺乏,严重制约饲草储备和救灾应急功能发挥。为解决这些问题,该文基于2009-2011年的Landsat TM5影像数据,并借助野外调查点和目视解译方法对中国半干旱牧区天然打草场状况进行监测分析。结果表明,中国半干旱牧区天然打草场面积达800.35万hm2,目视解译结果的平均解译精度达到76.78%。其中,内蒙古天然打草场面积居首位,面积为688.04万hm2,其次是松嫩平原草原区,打草场面积为91.80万hm2,河北半干旱农牧交错区的打草场面积最小,为20.51万hm2。在内蒙古,呼伦贝尔草甸草原天然打草场约为180.89万hm2,科尔沁沙化草原天然打草场约为96.44万hm2,锡林郭勒典型草原天然打草场面积约为395.40万hm2。研究区天然打草场的植被类型以温性草原类、温性草甸类、低地草甸类为主,少量分布在山地草甸类和温性荒漠草原类。该研究结果可为进一步分析全国半干旱区域打草场变化提供数据支撑。  相似文献   
992.
Molecular dynamics simulations were performed to study the interactions of bioactive catechins (flavonoids) commonly found in green tea with lipid bilayers, as a model for cell membranes. Previously, multiple experimental studies rationalized catechin's anticarcinogenic, antibacterial, and other beneficial effects in terms of physicochemical molecular interactions with the cell membranes. To contribute toward understanding the molecular role of catechins on the structure of cell membranes, we present simulation results for seven green tea catechins in lipid bilayer systems representative of HepG2 cancer cells. Our simulations show that the seven tea catechins evaluated have a strong affinity for the lipid bilayer via hydrogen bonding to the bilayer surface, with some of the smaller catechins able to penetrate underneath the surface. Epigallocatechin-gallate (EGCG) showed the strongest interaction with the lipid bilayer based on the number of hydrogen bonds formed with lipid headgroups. The simulations also provide insight into the functional characteristics of the catechins that distinguish them as effective compounds to potentially alter the lipid bilayer properties. The results on the hydrogen-bonding effects, described here for the first time, may contribute to a better understanding of proposed multiple molecular mechanisms of the action of catechins in microorganisms, cancer cells, and tissues.  相似文献   
993.
X.-C. Zhang  W.-Z. Liu  Z. Li  F.-L. Zheng   《CATENA》2009,79(3):237
Proper spatial and temporal treatments of climate change scenarios projected by General Circulation Models (GCMs) are critical to accurate assessment of climatic impacts on natural resources and ecosystems. The objective of this study was to evaluate the site-specific impacts of climate change on soil erosion and surface hydrology at the Changwu station of Shaanxi, China using a new spatiotemporal downscaling method. The Water Erosion Prediction Project (WEPP) model and climate change scenarios projected by the U.K. Hadley Centre's GCM (HadCM3) under the A2, B2, and GGa emissions scenarios were used in this study. The monthly precipitation and temperature projections were downloaded for the periods of 1900–1999 and 2010–2039 for the grid box containing the Changwu station. Univariate transfer functions were derived by matching probability distributions between station-measured and GCM-projected monthly precipitation and temperature for the 1950–1999 period. The derived functions were used to spatially downscale the GCM monthly projections of 2010–2039 in the grid box to the Changwu station. The downscaled monthly data were further disaggregated to daily weather series using a stochastic weather generator (CLIGEN). The HadCM3 projected that average annual precipitation during 2010–2039 would increase by 4 to 18% at Changwu and that frequency and intensity of large storms would also increase. Under the conventional tillage, simulated percent increases during 2010–2039, compared with the present climate, would be 49–112% for runoff and 31–167% for soil loss. However, simulated soil losses under the conservation tillage during 2010–2039 would be reduced by 39–51% compared with those under the conventional tillage in the present climate. The considerable reduction in soil loss in the conservation tillage indicates the importance of adopting conservation tillage in the region to control soil erosion under climate change.  相似文献   
994.
P.Barré等认为温带地区自然土壤中,由于植物根系将下层土壤中的钾和硅向上搬运,减缓了上层土壤中伊利石类矿物(混层伊利石/蒙皂石+伊利石)脱钾和脱硅过程,致使其长时间地存在较多的伊利石类矿物。本文旨在了解热带地区土壤中这一假设是否也存在,以海南琼北地区发育于由不同年代火山喷发形成的玄武岩所构成的时间序列土壤(1×104a,(9.0±2.0)×104a,(14.6±0.9)×104a,64×104a,(133±18)×104a,(181±8)×104a)为对象,利用X-射线衍射(XRD)技术分析了其黏土矿物的变化情况,结合土壤钾、硅、活性硅的分析结果,发现伊利石类矿物仅存在于(133±18)×104a以前的土壤中,表层土壤中钾和硅的含量高于下层的土壤,活性硅含量随成土年龄而降低。为此,我们认为:P.Barré假设在热带土壤形成发育过程中,在具有一定的生物复钾和复硅条件下,在成土初期也会存在,但最终会由于土壤强烈的脱钾和脱硅作用而逐步消失。  相似文献   
995.
Barley (Hordeum vulgare L.) is a cereal grown for animal feed, human consumption, and malting. Nutrient concentrations are important as they provide information regarding the dietary values of barley consumed by animals or human beings. In addition, grain nutrient removal may be useful for refining fertilizer recommendations. A study was conducted in 2015 and 2016 investigating the cultivar effects on grain yield, quality, and grain nutrient concentrations and removal under irrigated conditions for two-row barley cultivars. Adjunct and feed cultivars produced the highest yields compared with the all-malt and food cultivars. Specific quality and nutrient values were greater than or equal to in the food cultivar compared to the malt or feed cultivars. Variations in nutrient concentrations were measured among the adjunct and all-malt cultivars, which could potentially affect the malting and brewing qualities. Grain yield, quality, nutrient concentrations and nutrient removal varied among cultivars grown under identical environmental conditions, which may influence end-use.  相似文献   
996.

Purpose

Remediation of metal contaminated soil with biochar is attracting extensive interest in recent years. Understanding the significance of variable biochar properties and soil types helps elucidating the meticulous roles of biochar in immobilizing/mobilizing metals/metalloids in contaminated soils.

Materials and methods

Six biochars were produced from widely available agricultural wastes (i.e., soybean stover, peanut shells and pine needles) at two pyrolysis temperatures of 300 and 700 °C, respectively. The Pb-, Cu-, and Sb-contaminated shooting range soils and Pb-, Zn-, and As-contaminated agricultural soils were amended with the produced biochars. The mobility of metals/metalloids was assessed by the standard batch leaching test, principal component analysis and speciation modeling.

Results and discussion

The changes in soil properties were correlated to feedstock types and pyrolysis temperatures of biochars based on the principal component analysis. Biochars produced at 300 °C were more efficient in decreasing Pb and Cu mobility (>93 %) in alkaline shooting range soil via surface complexation with carboxyl groups and Fe-/Al-minerals of biochars as well as metal-phosphates precipitation. By contrast, biochars produced at 700 °C outperformed their counterparts in decreasing Pb and Zn mobility (100 %) in acidic agricultural soil by metal-hydroxides precipitation due to biochar-induced pH increase. However, Sb and As mobility in both soils was unfavorably increased by biochar amendment, possibly due to the enhanced electrostatic repulsion and competition with phosphate.

Conclusions

It is noteworthy that the application of biochars is not equally effective in immobilizing metals or mobilizing metalloids in different soils. We should apply biochar to multi-metal contaminated soil with great caution and tailor biochar production for achieving desired outcome and avoiding adverse impact on soil ecosystem.
  相似文献   
997.
This paper describes a multi-level drainage system, designed to improve drainage water quality. Results are presented from a field scale land reclamation experiment implemented in the Murrumbidgee Irrigation Area of New South Wales, Australia. A traditional single level drainage system and a multi-level drainage system were compared in the experiment in an irrigated field setting. The single level drainage system consisted of 1.8 m deep drains at 20 m spacing. This configuration is typical of subsurface drainage system design used in the area. The multi-level drainage system consisted of shallow closely spaced drains (3.3 m spacing at 0.75 m depth) underlain by deeper widely spaced drains (20 m spacing at 1.8 m depth). Data on drainage flows and salinity, water table regime and soil salinity were collected over a 2-year period.  相似文献   
998.
Low temperature is a major abiotic stress for rice cultivation, causing serious yield loss in many countries. To identify QTL controlling low temperature induced spikelet sterility in rice, the progeny of F2, BC1F1 and BC2F1 populations derived from a Reiziq × Lijiangheigu cross were exposed to 21/15°C for 15 days at the booting stage, and spikelet sterility was assessed. For genotyping, 92 polymorphic markers from 373 SSR and 325 STS primer pairs were used. A major QTL was initially indentified on the short arm of chromosome 10 by selective genotyping using highly tolerant and susceptible progeny from F2 and BC1F1 populations. The QTL (qLTSPKST10.1) was validated and mapped by genotyping the entire F2 (282 progeny) and BC1F1 (84 progeny) populations. The results from the F2 population showed that qLTSPKST10.1 could explain 20.5% of the variation in spikelet sterility caused by low temperature treatment with additive (a = 14.4) and dominant effect (d = −7.5). From the analysis of 98 selected BC2F1 progeny, the QTL located in the 3.5 cM interval between S10010.9 and S10014.4 was further confirmed. Based on the studies of 3 generations in 2 years, it was clear that the QTL on chromosome 10 is a major determinant of the control of low temperature induced spikelet sterility at booting stage.  相似文献   
999.
The translocation of pre‐anthesis nitrogen to the grain is an important source for winter wheat. The relation between the nitrogen translocation and irrigation regime was studied in the field under a rain‐proof trough shelter. Nitrogen (N) translocation amount, N translocation efficiency decreased with a decline in irrigation amount or by excessive irrigation. Compared with different organs, the leaf and stem had higher N translocation amounts, and contributions to grain for both cultivars – Jinan 17 and Lumai 21, indicating that stem also is a major N source for grain development. The contribution of pre‐anthesis total above ground N to grain N ranged from 57 to 76 %, indicating the importance of pre‐anthesis storage of N for achieving high grain N concentrations. Grain nitrogen and yield (kg ha?1) were positively and significantly correlated with the N translocation amounts and contributions, respectively, suggesting that the sink strength may be involved in the translocation of N from a vegetative organ to the grain. N harvest index (NHI) was significantly correlated with N translocation efficiency, suggesting that the latter is a prerequisite for increasing grain N and improving grain quality. The experiment showed that N translocation status is enhanced by better irrigation practices, but limited by severely deficient or excessive irrigation.  相似文献   
1000.
Efforts in grasspea (Lathyrus sativus) improvement have increased since the development of lines that are very low in the neurotoxin Beta-N-oxalyl-L-alpha-beta-diamino propionic acid (ODAP); also referred to as Beta-N oxalyl-amino-L-alanine (BOAA). Many programs now address several related aspects of improvement simultaneously. These include reduced ODAP concentrations, insect and disease resistance, nitrogen fixation, agronomic practices, fodder and forage production, and components for increased yielding ability. The coordinated, multidisciplinary approach now being applied to the genetic improvement of grasspea should allow the potential of this largely neglected grain legume to be fully realized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号