首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   219篇
  免费   6篇
  国内免费   1篇
林业   11篇
农学   2篇
基础科学   2篇
  17篇
综合类   11篇
农作物   5篇
水产渔业   2篇
畜牧兽医   163篇
园艺   5篇
植物保护   8篇
  2022年   2篇
  2021年   5篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   6篇
  2012年   12篇
  2011年   15篇
  2010年   10篇
  2009年   5篇
  2008年   21篇
  2007年   19篇
  2006年   7篇
  2005年   9篇
  2004年   15篇
  2003年   13篇
  2002年   20篇
  2001年   12篇
  2000年   8篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1986年   4篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有226条查询结果,搜索用时 687 毫秒
21.
We conducted two experiments to evaluate the effects of added choice white grease on performance and carcass merit of barrows and gilts reared under commercial conditions. Pigs were housed either 20 (Exp. 1) or 25 (Exp. 2) per pen and were provided 0.67 m2 of pen space per pig. Diets were based on corn and soybean meal and fed in a meal form. The proportion of soybean meal was increased in diets with added fat to maintain the same calorie:lysine ratio in all diets within a weight phase. In Exp. 1, 480 pigs were fed diets with 0, 2, 4, or 6% fat. Total lysine contents of the control diets were 1.21, 0.88, and 0.66% during the weight phases 36 to 59, 59 to 93, and 93 to 120 kg, respectively. Gain:feed was increased linearly (P < 0.01) due to fat addition in all weight intervals and over the total experiment. The effect of added fat on ADG was not consistent among the weight phases; a linear (P < 0.01) improvement was found from 36 to 59 kg, but no effect was found during the heavier weight phases. Over the total experiment, however, ADG was improved (P < 0.01) linearly. Carcass traits were not affected by treatment. Experiment 2 used 900 pigs to evaluate possible carryover effects on performance and carcass merit from feeding 6% fat. The experiment was divided into four phases: 25 to 45, 45 to 70, 70 to 90, and 90 to 115 kg; lysine contents of the control diets fed in each phase were 1.23, 1.05, 0.81, and 0.63%, respectively. The six treatments consisted of no added fat throughout the experiment or 6% added fat fed from 25 to 45 kg, 25 to 70 kg, 25 to 90 kg, 25 to 115 kg, or 45 to 70 and 90 to 115 kg. Carryover effects for ADG and G:F (P < 0.07) were found for the 90- to 115-kg interval and for ADFI and ME intake (P < 0.05) for the 45- to 70- and 70-to 90-kg intervals. When fat was added in the previous weight interval, ADG and G:F were improved and ADFI and ME intake were decreased in the subsequent weight interval. Pigs fed fat from 25 to 115 kg had more (P < 0.05) backfat and lower (P < 0.05) carcass leanness than pigs on the other treatments. These data suggest that fat can be added or removed from diets of growing-finishing pigs without any detrimental carryover effects. In fact, the positive carryover effect on ADG and G:F from 95 to 115 kg suggests that feeding fat from 25 to 95 kg will maximize performance over the total growing-finishing period but minimize any detrimental effects of added fat on carcass leanness.  相似文献   
22.
Seventy-two finishing pigs (initial weight = 57.6 kg) were utilized to determine the effects of porcine somatotropin (pST) and dietary lysine level on growth performance and carcass characteristics. Pigs were injected daily with 4 mg pST in the extensor muscle of the neck and fed either a pelleted corn-sesame meal diet (.6% lysine, 17.8% CP) or diets containing .8, 1.0, 1.2 or 1.4% lysine provided by additions of L-lysine.HCl. All diets were formulated to contain at least twice the required amounts of other amino acids. Control pigs received a placebo injection and the .6%-lysine diet. Increasing levels of dietary lysine resulted in increased ADG and improved feed conversion (quadratic, P less than .01) for pST-treated pigs. The calculated daily lysine intake was 16.6, 13.6, 19.6, 25.1, 29.6 and 33.6 g for the control and pST-treated pigs fed .6, .8, 1.0, 1.2 and 1.4% lysine, respectively, over the entire experiment. Breakpoint analysis indicated that cumulative ADG and feed conversion were optimized at 1.19 and 1.22% lysine, respectively. Longissimus muscle area and trimmed ham and loin weights increased as dietary lysine was increased among pST-treated pigs (quadratic, P less than .01). Breakpoint analysis indicated that 1.11% lysine maximized longissimus muscle area, whereas trimmed ham and loin weights were maximized at .91 and .98% lysine, respectively. Adjusted backfat thickness was not affected by dietary lysine, but pST-treated pigs had less backfat (P less than .05) than control pigs did. Percentage moisture of the longissimus muscle increased (linear, P less than .05), as did percentage CP (quadratic, P less than .05), whereas fat content decreased (linear, P less than .05) as lysine level increased. Similar trends in composition were observed for muscles of the ham (semimembranosus, semitendinosus, and biceps femoris). Shear-force values from the longissimus and semimembranosus were lowest for control pigs, but they increased as dietary lysine level increased among pST-treated pigs. Sensory panel evaluations indicated that juiciness and tenderness decreased (linear, P less than .05) as dietary lysine level increased. Plasma urea concentrations decreased linearly (P less than .01) on d 28 as lysine level increased, whereas plasma lysine and insulin were increased (quadratic, P less than .01). Plasma glucose and free fatty acid concentrations on d 28 tended to increase (quadratic, P less than .10) with increasing dietary lysine level.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
23.
24.
Two experiments were conducted to determine the effects of crude protein (CP) level in diets containing coarse wheat bran (CWB) with or without pharmacological levels of Zn (provided by zinc oxide: ZnO) on growth performance and fecal DM of nursery pigs. In experiment 1, 360 barrows (Line 200 × 400, DNA, Columbus, NE, initially 5.6 kg) were allotted to 1 of 6 dietary treatments from d 0 to 21 after weaning with 5 pigs per pen and 12 pens per treatment. Treatments included a positive control diet (21% CP) with 3,000 mg/kg Zn in phase 1 and 2,000 mg/kg in phase 2; negative control (21% CP) with 110 mg/kg added Zn, and 4 diets containing 4% CWB and 110 mg/kg added Zn formulated to contain 21%, 19.5%, 18%, or 16.5% CP. The 2 control diets and 21% CP CWB diet contained 1.40% standardized ileal digestible (SID) Lys in phase 1 and 1.35% SID Lys in phase 2, while the 19.5%, 18%, and 16.5% CP diets contained 1.33, 1.25 and 1.20% Lys, respectively, in both phases. Pigs fed the positive control diet containing pharmacological ZnO had increased (P < 0.05) ADG and G:F compared with the negative control and the 21% CP CWB diet. Reducing CP (concurrently with SID Lys) in diets containing CWB decreased ADG and G:F (linear, P = 0.002); however, fecal DM increased (linear, P = 0.005). In experiment 2, two groups of 300 and 350 pigs, initially 7.0 and 6.2 kg, respectively, were used with 5 pigs per pen and 26 pens per treatment. The objective was to determine if adding back essential AA would improve growth performance of pigs fed the low CP diets. All dietary treatments were fed for 13 days, contained 4% CWB, and consisted of: (1) positive control with 2,000 mg/kg of Zn and 21% CP (1.35% SID Lys); (2) no ZnO and 21% CP; and 3 diets with no ZnO formulated to 18% CP and (3) 1.2% SID Lys; (4) 1.35% SID Lys by the addition of feed grade amino acids (AA), and (5) diet 4 with non-essential amino acids (NEAA; Gly and Glu). Pigs fed 21% CP with ZnO had increased (P = 0.001) ADG compared to those fed 18% CP (1.35% SID Lys) with high levels of feed grade amino acids or those fed the reduced SID Lys (1.2%) diet. Overall, G:F was improved (P < 0.001) for pigs fed 21% CP diets and those fed the 18% CP diet with NEAA compared to pigs fed 1.2% SID Lys and pigs fed high levels of feed grade amino acids. Fecal DM was increased for pigs fed the reduced SID Lys diet. In summary, pharmacological levels of Zn improve pig growth performance, but reducing CP (and subsequently SID Lys) decreased nursery pig growth performance.  相似文献   
25.
Letters     
Editor's note: The AVJ welcomes letters from members in all areas of the profession on matters of importance to you. Please keep them brief ‐ to meet our space constraints. Letters will be subject to minimal editing procedures. Subject to letters complying with the AVJ's legal responsibilities, they will not be censored. Nor will individuals or groups waging'‘campaigns’ be permitted to abuse these pages. If submitting a letter intended for publication, kindly identify it as such. Letters to the Editor can be sent by mail, fax or e‐mail at the contact points listed at the start of the News Section. Writers may use a pseudonym to protect their identities ‐ but must supply the Editor with verifiable names and points of contact.  相似文献   
26.
27.
The levels of blood-plasma testosterone were studied in the adult light bodied strain cocks. Blood was sampled (1 ml) from the wing vein by means of a heparinized syringe six times within a 24-hour interval. The plasma obtained by centrifugation was kept in a refrigerator at a temperature of --18 degrees C. Testosterone was determined by the radioimmunological method. The testosterone levels were significantly higher (P less than 0.001), 18.8 nmol/l on the average, in the blood samples taken during the dark period of the day (10 o'clock p.m., 2 and 6 o'clock a.m.) than in the samples taken in the light part of the day (8 and 10 o'clock a.m., 2 o'clock p.m.) when the average concentration of the studied hormone was 10.7 nmol/l of plasma. the lowest levels of testosterone were recorded in the morning and the highest values were recorded late in the evening (10 o'clock p.m.). The differences in the levels of the hormone between sampling terms indicate that the testosterone level in adult animals shows diurnal variances. It was found by the study of the concentration of testosterone in the blood plasma of the same individuals within short intervals of time (30-60 min) that testosterone secretion in adult cocks had a pulsatory manner. The evaluation of hormone levels should include not only the diurnal variances but also the pulsatory manner of testosterone secretion.  相似文献   
28.
An evaluation of barley in starter diets for swine   总被引:5,自引:0,他引:5  
Four growth trials and one digestibility trial were conducted to determine the effects of substituting barley for grain sorghum in weanling pig diets on pig performance and nutrient digestibility. Experiments 1 and 2 were 35-d growth trials in which barley was substituted for gain sorghum at levels of 0, 10, 20, 30 and 40% of the diet. Average daily gain (ADG), average daily feed intake (ADFI) and feed conversion (F/G) were not affected by dietary barley level (P greater than .50). Experiment 3 was a digestibility trial conducted to determine the apparent digestibility of dry matter (DMD), gross energy (GED), and N (ND) and percentage of N retained (%NRT) of pigs fed the 0, 20 and 40% barley diets. As dietary barley level increased, DMD and GED decreased linearly (P less than .05), whereas %NRT increased linearly (P less than .10). Apparent N digestibility was not affected by dietary treatment (P greater than .12). Experiments 4 and 5 were 35-d growth trials with treatments arranged in a 2 x 3 factorial design to determine the effects of barley particle size (fine, 635 microns or medium, 768 microns) and dried whey level (0, 10 or 20%) on pig performance. Average daily gain and ADFI increased linearly (P less than .01) as whey level increased. Pigs fed diets containing fine-ground barley grew faster and were more efficient (P less than .05) than those fed medium-ground barley diets.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
29.
30.
Two trials were conducted to determine the effects of weaning age on pig performance in a multisite production system. The second trial also evaluated the effects of modifying the nursery feeding program according to weaning age. In Trial 1 (2,272 pigs), treatments included weaning litters at 12, 15, 18, or 21 d of age. In Trial 2 (3,456 pigs), litters were weaned at 15, 16, 18, 19, 21, or 22 d of age and categorized into three treatments (15.5, 18.5, or 21.5 d of age). In Trial 2, pigs in each age group were fed one of two nursery feeding programs. Nursery feeding programs varied in both diet formulation and in the quantity of diets fed containing increased levels of whey and spray-dried animal plasma. Each trial was conducted as a randomized complete block design with four blocks of nursery and finishing sites. All weaning-age treatments were weaned from a 7,300-sow farm on the same day into the same nursery. Each block remained intact as pigs moved from nursery to finishing site. Increasing weaning age (12, 15, 18, or 21 d in Trials 1; and 15.5, 18.5, or 21.5 d in Trial 2) increased (linear, P < 0.001) ADG (299, 368, 409, 474 +/- 7 g/d; 435, 482, 525 +/- 13 g/d) and tended to decrease (linear, P < 0.09) mortality (5.25, 2.82, 2.11, 0.54 +/- 0.76%; 2.17, 1.56, 1.30 +/- 0.36%) in the initial 42 d after weaning. Finishing ADG (722, 728, 736, 768 +/- 11 g/d; 783, 790, 805 +/- 11 g/d) also improved (linear, P < 0.01) with increasing weaning age. Overall, increasing weaning age increased (linear, P < 0.001) wean-to-finish ADG (580, 616, 637, 687 +/- 8 g/d; 676, 697, 722 +/- 6 g/d), weight sold per pig weaned (94.1, 100.5, 104.4, 113.1 +/- 1.3 kg; 107.6, 111.6, 116.2 +/- 1.1 kg), and decreased (linear, P < 0.03) mortality rate (9.4, 7.9, 6.8, 3.6 +/- 0.95%; 3.9, 3.4, 2.5 +/- 0.5%). Altering the nursery feeding program did not affect wean-to-finish growth performance. In this multisite production system, increasing weaning age from 12 to 21.5 d of age increased weight sold per pig weaned by 1.80 +/- 0.12 kg for each day increase in weaning age. These studies suggest increasing weaning age up to 21.5 d can be an effective management strategy to improve wean-to-finish growth performance in multisite pig production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号