首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
林业   1篇
农学   1篇
  4篇
综合类   2篇
畜牧兽医   4篇
园艺   1篇
  2021年   1篇
  2018年   1篇
  2013年   2篇
  2012年   1篇
  2010年   2篇
  2009年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  1976年   1篇
排序方式: 共有13条查询结果,搜索用时 0 毫秒
11.
• Crop diversification is a dynamic pathway towards sustainable agrifood systems.• Technological and institutional barriers restrict uptake of crop diversification.• More coordination and cooperation among agrifood system stakeholders is required.• The European Crop Diversification Cluster calls for multiactor networks.European cropping systems are often characterized by short rotations or even monocropping, leading to environmental issues such as soil degradation, water eutrophication, and air pollution including greenhouse gas emissions, that contribute to climate change and biodiversity loss. The use of diversification practices (i.e., intercropping, multiple cropping including cover cropping and rotation extension), may help enhance agrobiodiversity and deliver ecosystem services while developing new value chains. Despite its benefits, crop diversification is hindered by various technical, organizational, and institutional barriers along value chains (input industries, farms, trading and processing industries, retailers, and consumers) and within sociotechnical systems (policy, research, education, regulation and advisory). Six EU-funded research projects have joined forces to boost crop diversification by creating the European Crop Diversification Cluster (CDC). This Cluster aggregates research, innovation, commercial and citizen-focused partnerships to identify and remove barriers across the agrifood system and thus enables the uptake of diversification measures by all European value-chain stakeholders. The CDC will produce a typology of barriers, develop tools to accompany actors in their transition, harmonize the use of multicriteria assessment indicators, prepare policy recommendations and pave the way for a long-term network on crop diversification.  相似文献   
12.
A synthetic, water‐soluble iron‐porphyrin [meso‐tetra(2,6‐dichloro‐3‐sulfonatophenyl) porphyrinate of Fe(III) chloride] has recently been proposed as a biomimetic catalyst in the process of oxidative polymerization of terrestrial humic acids, to increase their conformational stability and thus contribute to a reduction of soil CO2 release into the atmosphere. This study was aimed at investigating changes in selected soil chemical properties, CO2 efflux, and maize root morpho‐topology after the addition of iron‐porphyrin as a microcosm‐style experiment, located in a greenhouse. The addition of mature compost was also included as an experimental factor in order to reveal synergistic effects in regard to freshly added organic materials. Iron‐porphyrin determined a negligible effect on soil organic budget in both unplanted and planted microcosms. Conversely, the biomimetic catalyst was found to have significant and contrasting effects on soil respiration, apparently reflecting different iron porphyrin–plant–compost interactions. Consequently, iron‐porphyrin significantly reduced CO2 efflux from the bare (unplanted) soil, which was, conversely, stimulated in maize‐planted microcosms. Additionally, combined iron‐porphyrin and compost addition synergistically acted in increasing soil respiration in planted microcosms. Moreover, root biomass was increased with the addition of iron‐porphyrin, and a further effect on maize root morphology was noted when used in combination with compost; notably the length of coarse and fine roots increased. We hypothesized that the efficacy of iron‐porphyrin in reducing CO2 efflux from soil may be mediated by morphological changes in the plant‐root system.  相似文献   
13.
Two dogs were diagnosed with highly comminuted diaphyseal tibial fractures following traumatic incidents. Investigational hybrid interlocking nail (ILN) bolt/external skeletal fixator (ESF) pins were used to repair both fractures. The surgery was successful, and fractures healed without complications by 6 weeks (case no. 1) and 17 weeks (case no. 2) after surgery. This article describes the application and the advantages of a new, investigational ILN supplement that was specifically designed to accomplish initial rigid stability and allow progressive destabilization to the fracture repair. The authors are continuing to study the biomechanical properties of this procedure in order to accurately establish clear recommendations for its use in certain fracture situations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号