首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6304篇
  免费   3359篇
林业   157篇
农学   429篇
  1294篇
综合类   15篇
农作物   83篇
水产渔业   2485篇
畜牧兽医   3940篇
园艺   11篇
植物保护   1249篇
  2022年   5篇
  2021年   126篇
  2020年   465篇
  2019年   1018篇
  2018年   889篇
  2017年   931篇
  2016年   926篇
  2015年   810篇
  2014年   793篇
  2013年   950篇
  2012年   446篇
  2011年   463篇
  2010年   587篇
  2009年   242篇
  2008年   225篇
  2007年   62篇
  2006年   94篇
  2005年   90篇
  2004年   98篇
  2003年   92篇
  2002年   98篇
  2001年   68篇
  2000年   98篇
  1999年   7篇
  1997年   11篇
  1996年   4篇
  1995年   6篇
  1994年   5篇
  1993年   6篇
  1991年   1篇
  1990年   4篇
  1989年   2篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   6篇
  1977年   5篇
  1976年   1篇
  1975年   3篇
  1974年   2篇
  1973年   1篇
  1970年   4篇
  1968年   1篇
  1966年   1篇
  1963年   1篇
排序方式: 共有9663条查询结果,搜索用时 0 毫秒
991.
According to recent conceptual models, the organic carbon (OC) of soils can be divided into OC fractions of increasing stability from labile free OC to resistant OC associated with the soil mineral phase. In this study, we present a method for quantifying two OC fractions based on soil aggregate–size fractionation and the N2 gas–adsorption method. For this purpose, we analyzed soil material of the plow layer of a Haplic Chernozem subjected to different fertilizer treatments (no fertilizer, mineral fertilizer, mineral and organic fertilizer). The total organic‐C concentration (TOC) and the clay content of the different size fractions were determined as well as the specific surface area (SSAmineral) and the sample pore volume after thermal oxidation (OC‐free). The TOC of the different soil‐aggregate fractions was linearly related to SSAmineral. Clay‐associated OC and nonassociated OC fractions of the different soil samples were quantified using two methods based on the OC surface loading at the clay fraction. The application of organic fertilizer increased the amount of nonassociated OC but hardly affected the concentration of clay‐associated OC. This finding agrees with previous studies on C dynamics in soils and indicates a finite capacity of soil materials to sequester OC. Even without any addition of organic fertilizer, the mineral phase of the analyzed soil material appears to be C‐saturated.  相似文献   
992.
In order to optimize nitrogen (N) fertilization and to reduce the environmental impact of oilseed rape without decreasing yield, a clearer understanding of N dynamics inside the plant is crucial. The present investigation therefore aimed to study the effects of different N‐application rates on the dynamics of N uptake, partitioning, and remobilization. The experiment was conducted on winter oilseed rape (Brassica napus L. cv. Capitol) under three levels of N input (0, 100, and 200 kg N ha–1) from stem elongation to maturity using 15N‐labeling technique to distinguish between N uptake and N retranslocation in the plant. Nitrogen fertilization affected the time‐course of N uptake and also the allocation of N taken up from flowering to maturity. Most pod N came from N remobilization, and leaves accounted for the largest source of remobilized N regardless the N‐application rate. However, the contribution of leaves to the remobilized N pool increased with the N dose whereas the one of taproot decreased. Stems were the main sink for remobilized N from stem elongation to flowering. Leaves remained longer on N200 than on N0 and N100 plants, and N concentration in fallen leaves increased with the N treatment and in N100 plants along an axial gradient from the basal to the upper leaves. Overall, these results show that the timing of N supply is more crucial than the N amount to attain a high N efficiency.  相似文献   
993.
Fine earth accumulated within the weathering fissures of the coarse‐soil fraction (particles > 2 mm), so called “stone‐protected fine earth”, can provide a high short‐term nutrient release by cation exchange. It is thus hypothesized that unweathered gneiss particles cannot provide plants with exchangeable‐cation nutrients and that biological weathering is needed to include silicate‐bound nutrients into biochemical cycles. In a microcosm experiment, ectomycorrhizal Norway spruce (Picea abies) seedlings were grown on either weathered or unweathered paragneiss coarse‐soil fragments under natural hydraulic and climatic boundary conditions. A nutrient solution containing N, P, and K was added, however Mg and Ca could only be taken up from the coarse‐soil substrate. Solutes in drainage were analyzed during the experiment; plant nutrient uptake was determined after the experiment ended. Solute dynamics depended on the weathering state of the substrates: unweathered gneiss showed high initial Mg and Ca fluxes that diminished strongly afterwards, whereas weathered gneiss showed a much more gradual and sustainable release of these cations. Patterns in dissolved organic C and sulfate drainage indicated that the internal pores of weathered gneiss fragments contained organic material most likely as a result of living spaces from microorganisms. Plant biomass did not differ between treatments, however Mg content was higher in seedlings grown on weathered gneiss. Nutrient budgets demonstrated that the “stonesphere” of weathered gneiss can act as a quasi‐constant nutrient source whereas unweathered gneiss only provided high initial nutrients fluxes. In nutrient‐depleted, acidified fine‐earth environments, the coarse‐soil fraction may therefore act as a retreat for nutrient‐adsorbing tissues and as a buffer for nutrient shortages.  相似文献   
994.
995.
An experiment was carried out to determine how the late application of nitrogen (N) fertilizer affects the use of pre‐anthesis carbon reserves during the grain‐filling period of pot‐grown wheat with no water shortage. Increasing doses (equivalent to 0, 140, and 180 kg N ha–1) of N fertilizer were applied, either in two amendments (stages GS20 and GS30) or in three amendments (stages GS20, GS30, and GS37, according to Zadoks scale). The management of fertilizer by combining an increased N rate with late N application was able to stimulate canopy development, to raise photosynthetic capacity and carbohydrate accumulation during the vegetative stages, and to increase grain yield. Based on the dynamics of carbohydrate accumulation in the ear, three phases were differentiated during the grain‐filling period, whose temporary pattern remained stable regardless of the fertilizer management. The net remobilization of carbohydrates started 12 d after anthesis from the leaves and 28 d after anthesis from roots and stems. The increase of the N dose with late N application allowed on one hand a lower use of the pre‐anthesis carbon reserves in favor of greater de novo photosynthesis during the grain‐filling period, and on the other hand greater relative contribution of the leaf and ear C reserves to remobilization towards the grain. Further splitting the dose increased only the relative contribution of ear C reserves. The stem contribution seemed to be independent of N applied whereas the root contribution tended to diminish with late N application.  相似文献   
996.
The effects of cumin and ginger as antioxidants on dough mixing properties and cookie quality were evaluated. Antioxidant activities in cookies were estimated by total phenolic compounds (TPC) contents and free radical scavenging activities. The cookie dough development was evaluated using Mixolab equipment which showed that addition of cumin did not change dough stability and C2, but decreased C3 and C4. While the addition of 5% ginger decreased dough stability (from 8.4 in the control sample to 6.7 min with 5% ginger addition), C2 (from 0.49 in the control sample to 0.31 N·m with 5% ginger addition), C3, and C4. Cookies formulated with addition of cumin and ginger had increased spread ratios, were softer, and had lower L* and b* values (were darker) than the control. Sensory analysis showed that cookies with cumin and ginger additions had overall acceptability similar to that of the the control with a slightly darker appearance, as confirmed by color determination. Using cumin and ginger significantly increased TPC contents from 78.5 in the control to 93.0 and 109.8 mg of gallic acid equivalent/100 g, respectively. Similar results were observed in the antioxidant activity measured by 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH), which increased from 41.0% in the control to 51.5% and 64.6%, respectively, for cookies with 5% addition of cumin and ginger.  相似文献   
997.
Dent corn (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) sample sets representative of commonly grown hybrids and diverse physical attributes were analyzed for alkaline cooking performance. The influence of kernel characteristics including hardness, density, starch properties (thermal, pasting, and crystallinity), starch content, protein content, and prolamin content on alkaline cooking performance was also determined. Corn nixtamal moisture content was lower for hard, dense kernels with high protein contents; sorghum nixtamal moisture content was lower for kernels with low moisture contents and low starch relative crystallinities. Statistically significant (P < 0.05) regression equations showed that corn nixtamal moisture content was influenced by TADD (tangential abrasive dehulling device) index, kernel moisture content, starch content, and protein content; sorghum nixtamal moisture content was influenced by starch relative crystallinity, kernel moisture content, and abrasive hardness index. Pericarp removal was not strongly correlated with kernel characterization tests. Location (environmental) and hybrid (genetic) factors influenced most kernel characteristics and nixtamalization processing variables.  相似文献   
998.
This study aims to elucidate the significance of compost and soil characteristics for the biological activity of compost‐amended soils. Two agricultural soils (Ap horizon, loamy arable Orthic Luvisol and Ah horizon, sandy meadow Dystric Cambisol) and a humus‐free sandy mineral substrate were amended with two biowaste composts of different maturity in a controlled microcosm system for 18 months at 5 °C and 14 °C, respectively. Compost application increased the organic matter mineralization, the Cmic : Corg ratio, and the metabolic quotients significantly in all treatments. The total amount of Corg mineralized ranged from < 1 % (control plots) to 20 % (compost amended Dystric Cambisol). Incubation at 14 °C resulted in 2.7‐ to 4‐fold higher cumulative Corg mineralization compared to 5 °C. The Cmic : Corg ratios of the compost‐amended plots declined rapidly during the first 6 months and reached a similar range as the control plots at the end of the experiment. This effect may identify the compost‐derived microbial biomass as an easily degradable C source. Decreasing mineralization rates and metabolic quotients indicated a shift from a compost‐derived to a soil‐adapted microbial community. The Corg mineralization of the compost amended soils was mainly regulated by the compost maturity and the soil texture (higher activity in the sandy textured soils). The pattern of biological activity in the compost‐amended mineral substrate did not differ markedly from that of the compost‐amended agricultural soils, showing that the turnover of compost‐derived organic matter dominated the overall decay process in each soil. However, a priming effect occurring for the Dystric Cambisol indicated, that the effect of compost application may be soil specific.  相似文献   
999.
1000.
Corn starch amylopectin (AP) fine structure and gel textural properties of dry‐milled grit and flour fractions were investigated in 10 corn cultivars. Amylopectin was isolated by fractionating the starch derived from these two milled fractions using size‐exclusion chromatography (SEC). Fine structure was characterized by SEC after thorough debranching with pullulanase. SEC revealed three major fractions of debranched AP from the grit and flour portion. Amylopectin in the grit portion had a significantly higher proportion of long chains (DPn 70–75) and a postulated lower extent of chain branching than its flour counterpart. Texture profile analysis showed that flour gels from the grit fraction had significantly higher values for hardness, gumminess, and springiness compared with gels from the floury fraction. Trends were similar for starch gels of the two dry‐milled fractions, though only springiness was significantly different. The finding that differences in AP fine structure in dry‐milled fractions relate to gel textural differences suggests that dry millers may be able to produce flours of different functionalities that would be suited for different end uses. Additionally, mixing the dry‐milled flour fraction with a grit‐derived flour would result in different product properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号