首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   4篇
林业   6篇
农学   7篇
  34篇
综合类   8篇
农作物   4篇
水产渔业   2篇
畜牧兽医   16篇
园艺   1篇
植物保护   3篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   6篇
  2019年   3篇
  2018年   8篇
  2017年   12篇
  2016年   7篇
  2015年   1篇
  2014年   2篇
  2013年   9篇
  2012年   3篇
  2011年   6篇
  2010年   2篇
  2008年   4篇
  2006年   1篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
  1988年   1篇
  1976年   1篇
排序方式: 共有81条查询结果,搜索用时 15 毫秒
51.
Switchgrass (Panicum virgatum L.) is a perennial biofuel crop with a high production potential and suitable for growth on marginal land. This study investigates the long-term planting effect of switchgrass on the dynamics of soil moisture, pH, organic carbon (SOC), total nitrogen (TN), nitrate nitrogen (NO3-N) and ammonium nitrogen (NH4+-N) for soils to a depth of 90-cm in a sandy wasteland, Inner Mongolia, China. After crop harvesting in 2015, soil samples were collected from under switchgrass stands established in 2006, 2008, and 2009, native mixture, and a control that was virgin sand. Averaged across six layers, soil moisture and pH was significantly higher under the native mixture than switchgrass or virgin sand. However, SOC and TN were significantly higher under the 2006 switchgrass stand when compared with all other vegetation treatments and the control. The SOC and TN increased from 2.37 and 0.26 g kg?1, respectively, for 2009 switchgrass stand, and to 3.21 and 0.42 g kg?1, respectively, for 2006 switchgrass stand. Meanwhile, SOC and TN contents were 2.51 and 0.27 g kg?1, respectively, under the native mixture. The soil beneath switchgrass and native mixture showed the highest NO3-N and NH4+-N, respectively. The soil moisture increased with depth while SOC, TN, and NO3-N decreased. An obvious trend of increasing moisture, SOC, TN, and mineral N was observed with increasing switchgrass stand age. Thus, growing switchgrass on sandy soils can enhance SOC and TN, improve the availability of mineral N, and generate more appropriate pH conditions for this energy cropping system.  相似文献   
52.
Tolerance to aluminium and manganese toxicity at the seedling stage for 72 maize accessions was examined in solution culture. 0.22 mM Al and 2.0 mM Mn gave better genotypic separation for aluminium and manganese tolerance assessed on the basis respectively of relative root length, and visual symptoms of leaf chlorosis and necrosis. There was considerable variability among accessions for tolerance to aluminium and to manganese. Three accessions, Bozm 1335, Bozm 1337, and Bozm 1536 showed tolerance to Al, while 4, Chzm 01009, Champ, Bozm 0715, LG 20.80 exhibited tolerance to Mn. Accession, Zea 769 was tolerant to both metals. A significant Al x Mn interaction was found when five accessions were grown in a mixture of 0.22 mM aluminium and 2.0 mM manganese. Root length inhibition in Al alone was slightly ameliorated when the accessions were grown in the Al + Mn solution. Tolerance to aluminium and manganese does not necessarily coincide, different mechanisms being involved in tolerance to the two metals.  相似文献   
53.
The effect on properties of starch isolated from Ajax and Diamant potatoes freshly harvested and irradiated immediately after harvest and after two weeks with 0.05, 0.10, 0.15, and 0.20 kGy were reported. Changes due to postirradiation storage up to six months at two different conditions (5 C, 90±2% RH and 20 C, 79±5% RH) were also studied. Swelling power (SP) slightly decreased or remained unchanged with different irradiation dose, but the effect of timing of irradiation after harvest was significant. Doses of 0.2 and 0.15 kGy significantly (p≤0.05) increased solubility, particularly at 90 C solubility temperature compared to lower doses. Decrease in viscosity with increasing dose immediately after irradiation was observed in both varieties but was more pronounced in Diamant. However, changes were dependent on variety, irradiation dose, timing of irradiation, and postirradiation storage conditions. Viscoamylograph test showed that 0.2 kGy significantly (p≤0.05) increased transmission temperature (TT) and temperature at maximum viscosity (TMV), but decreased the maximum viscosity immidiately after irradiation. The same trend was established during the post-irradiation storage time, particularly in Ajax starch, regardless of timing of irradiation or storage conditions. Thermoluminescence (TL) glow curves exhibited qualitative differences between irradiated and unirradiated tubers during the entire storage period, but dose estimation could not be determined.  相似文献   
54.
  1. The study was designed to investigate the replication of a re-assortant H9N2 avian influenza virus (AIV) and induction of the interferon (IFNγ) response after aerosol or intranasal inoculation with the virus in guinea fowl. To determine virus shedding pattern, oropharyngeal and cloacal swabs and tissue specimens of trachea, lungs, spleen and caecal tonsils were collected post-inoculation (pi).

  2. Infected guinea fowl showed mild clinical signs, while negative control guinea fowl remained healthy and active throughout the experiment irrespective of the inoculation route. However, the clinical signs were more prominent in guinea fowl infected through the aerosol route.

  3. Virus was detected in all oropharyngeal and cloacal swabs up to 7 d pi in guinea fowl from both inoculation groups. However, virus was detected more frequently and in higher titres in oropharyngeal swabs and specimens of trachea and lungs from the group exposed to aerosols than in the group given intranasal drops.

  4. In accordance with viral replication findings, expression of IFNγ was up-regulated on 1, 2 and 4 d pi to a significantly higher level in lung tissue specimens from the group exposed to virus aerosol than from controls treated with PBS intranasally. On the other hand, IFNγ was up-regulated above that of controls in lung tissue specimens from the group treated with intranasal drops of virus only on 4 d pi.

  5. These findings indicate that virus administered in aerosols was more efficient in infecting the lower respiratory tract and in inducing activity of the IFNγ gene than virus administered as intranasal drops. The results of this study suggest that virus aerosols cause more intense respiratory infection and increase the shedding of the H9N2 AIV in guinea fowl, highlighting the potential role of guinea fowl as a mixing bowl for transmission and maintenance of H9N2 AIV between poultry premises.

  相似文献   
55.
Tropical Animal Health and Production - Spirulina has been used as a food source from many years for human and animals because of its superior profile of nutrition. Spirulina (SPA) having antiviral...  相似文献   
56.
Understanding the role of organic acids on phosphorus (P) sorption capacity of soils is very important for its economic and friendly management. Combining P application with low-molecular weight organic acids could result in its higher plant availability for prolonged time. Therefore, citric and oxalic acid (at the rate of 1.0 mM kg?1 soil) were evaluated for their effect on P sorption capacity and its plant availability in two different textured calcareous soils. Organic acids decreased P sorption capacity and organic carbon partition coefficient (Koc) whereas increased Gibbs free energy (ΔG) of P. Organic-acid-treated soils required lesser quantity of P fertilizer to produce soil solution P concentration optimum for plant growth (external P requirement [EPR0.2]), that is, 0.2 mg L?1. Citric acid was efficient than oxalic acid in the above effects. P sorption parameters of Freundlich model were negatively correlated with lime potential and ΔG whereas had positive correlation (< 0.05) with EPR0.2 and Koc. Incubation with oxalic acid increased available P in loamy sand and loam soil by 20% and 30%, respectively. Thus, organic acids could help reduce application rate of P fertilizer through lowering its adsorption in highly P-fixing soils without compromise on yield.  相似文献   
57.
Genetic diversity is an area of concern for sustaining crop yield. Information on genetic relatedness/diversity among Gossypium arboreum L. cultivars/genotypes is scanty. We have used random amplified polymorphic DNA (RAPD) analysis to assess the genetic divergence/relationship among 30 genotypes/cultivars of G. arboreum. Of 45 primers surveyed, 63% were polymorphic. Out of the total number of loci amplified, 36% were polymorphic. The calculated genetic similarity between the cultivars/genotypes was in the range of 47.05–98.73%. Two genotypes, HK-244 and Entry-17, were the most distantly related. The average genetic relatedness among all the genotypes was 80.46%. However, most of the cultivated varieties showed a close genetic relationship, indicating a narrow genetic base in comparison to the non-cultivated germplasm. The calculated coefficients were used to construct a dendrogram using the unweighted pair group of arithmetic means (UPGMA) algorithm, which grouped the genotypes/cultivars into two major and three smaller clusters. The study is the first comprehensive analysis of the genetic diversity of G. arboreum germplasm and identifies cultivars that will be useful in extending the genetic diversity of cultivated varieties and future genome mapping projects.  相似文献   
58.
From January 2010 to December 2011, samples of leaves from citrus varieties Kinnow, Musambi and Feutral were taken from the five tehsils (administrative subdivisions) of Sargodha District in Pakistan including Sargodha, Bahalwal, Silanwalli, Sahiwal and Kotmomin, to study the population trends in citrus leaf miner (CLM), Phyllocnistis citrella (Stainton) (Lepidoptera: Gracillariidae), and its correlation with various environmental factors: (temperature, humidity and rainfall); plant morphological factors: moisture contents of leaves, leaf thickness, surface area (cm 2 ), and biochemical percentage of calcium, potassium and magnesium in leaves. The maximum population of CLM was observed on Kinnow and Feutral, followed by Musambi. The effect of these factors on the larval population was 8.39- 2.30(Mg)+2.73(K)-0.398(Ca)-0.100(Temp)0.038(Humidity)+0.567(Rain)+0.07(Moist) 1.01 (Thickness)-0.022(Surface area). This equation revealed that magnesium, calcium, temperature, humidity, leaf thickness and leaf surface area are negatively correlated with larvae population, whereas potassium, rainfall and moisture are positively correlated with larvae population.  相似文献   
59.
Rising temperatures are a major threat to global wheat production, particularly when accompanied by other abiotic stressors such as mineral nutrient deficiencies. This study aimed to quantify the effects of supra‐optimal temperature on growth, photosynthetic performance, and antioxidative responses in bread wheat cultivars grown under varied zinc (Zn) supply. Two bread wheat cultivars (Triticum aestivum L., cvs. Lasani‐2008 and Faisalabad‐2008) with varied responsiveness to Zn supply and drought tolerance were cultured in nutrient solution with low (0.1 µM) or adequate (1.0 µM) Zn under optimal (25/20°C day/night) or supra‐optimal (36/28°C day/night) temperature regimes. Supra‐optimal temperature severely reduced root but not shoot biomass, whereas low Zn reduced shoot as well as root biomass. Shoot‐to‐root biomass ratio was reduced under low Zn but increased under supra‐optimal temperature. Supra‐optimal temperature inhibited root elongation and volume particularly in plants supplied with low Zn. In both cultivars, Zn efficiency index was reduced by supra‐optimal temperature, whereas heat tolerance index was reduced by low Zn supply. Supra‐optimal temperature decreased photosynthesis, quantum yield, and chlorophyll density in low‐Zn but not in adequate‐Zn plants. In comparison, low Zn decreased specific activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) and increased glutathione reductase (GR), where supra‐optimal temperature increased SOD, decreased GR and did not change APX activity in leaves and roots. Moreover, supra‐optimal temperature severely reduced shoot Zn concentration and Zn uptake per plant specifically under adequate Zn supply. Overall, supra‐optimal temperature exacerbated adverse effects of low Zn supply, resulting in severe reductions in growth traits viz. shoot and root biomass, root length and volume, and consequently impeded Zn uptake, enhanced oxidative stress and impaired photosynthetic performance. Adequate Zn nutrition is crucial to prevent yield loss in wheat cultivated under supra‐optimal temperatures.  相似文献   
60.
Sodium (Na) and calcium (Ca) in brackish water differentially affects boron (B) nutrition of plants grown on calcareous and salt-affected soils. A glasshouse experiment was conducted to evaluate the effect of brackish irrigation water with different sodium adsorption ratio (SARiw) [distilled-water control, 8, and 16 (mmolc L?1)1/2] on B nutrition of maize. Plants were grown for 40 days with 5 levels of B (0, 1.29, 2.30, 3.22, and 4.46 mg kg?1 soil). Boron application significantly improved plant growth at lower rates. High B rates and application of high SARiw decreased plant growth independently, and the reduction in growth was further aggravated due to combined effect of both B and high SARiw. Decreased growth was attributed mainly to increased shoot B and Na concentration, while decreased Ca concentration. These ionic changes also altered internal and external B requirements. Yield decrease was observed at lower B concentration in soil solution B and plants shoot grown with high SARiw than in plants grown with distilled water and low B application rates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号