首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   13篇
林业   10篇
农学   27篇
基础科学   5篇
  77篇
综合类   2篇
农作物   9篇
水产渔业   15篇
畜牧兽医   39篇
园艺   7篇
植物保护   21篇
  2022年   5篇
  2021年   7篇
  2020年   8篇
  2019年   11篇
  2018年   16篇
  2017年   10篇
  2016年   12篇
  2015年   8篇
  2014年   8篇
  2013年   35篇
  2012年   8篇
  2011年   9篇
  2010年   9篇
  2009年   13篇
  2008年   8篇
  2007年   4篇
  2006年   5篇
  2005年   7篇
  2004年   6篇
  2003年   2篇
  2002年   3篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1988年   3篇
  1986年   1篇
排序方式: 共有212条查询结果,搜索用时 15 毫秒
131.
对合成的大袋蛾性信息素的4种立体异构体进行林间诱捕试验,确定了其具有强活性的立体构型为(3R,13R)-(1S)- 1-乙基-2-甲丙基 3,13-二甲基十五酸甲酯.  相似文献   
132.
A 63‐day feeding study was conducted to evaluate the effect of partial substitution (0%, 20%, 40% and 60%) of dietary fish meal (FM) with soybean meal (SBM) on the growth performance and feed utilization of speckled shrimp, Metapenaeus monoceros juveniles. A total of 180 M. monoceros juveniles with an average weight of 0.67 ± 0.18 g were equally distributed over 12 glass aquaria (30 L each, triplicate per treatment). All aquaria were filled with filtered sea water (30–35 ‰, salinity). Four isonitrogenous (400 g kg?1 crude protein) and isocaloric (20.5 MJ GE kg?1) test diets were formulated. The control diet contained FM (D1) as the main protein source. In the other diets, FM was partially replaced with 20 (D2), 40% (D3) or 60% (D4) SBM. The results indicate that the diet in which 40% of the FM is replaced by SBM yields similar growth and production, and is as cost effective, as the control diet.  相似文献   
133.
The marine flagellated Chlorophyta Tetraselmis suecica is among the most important live food species in marine aquaculture. In the present study, the effects of dietary supplementation of dried marine microalgae, Tetraselmis suecica, on growth performance; feed utilization; chemical composition; gene expression of superoxide dismutase (SOD), glutathione peroxidase (GPx) and insulin‐like growth factor 2 (IGF‐II) gene of Pacific white shrimp, Litopenaeus vannamei; muscle protein polymorphism; and microbial count were assessed and evaluated. Three hundred and sixty L. vannamei (postlarvae) Pls (0.124 ± 0.002 g) were randomly stocked into 40‐L glass aquaria (30 shrimp/aquarium) and fed three times daily four tested diets: a basal diet (control), diet incorporated with 2.5 g kg?1 dried T. suecica (T1), 5 g kg?1 dried T. suecica (T2) and 7.5 g kg?1 dried T. suecica (T3) in triplicates, for 90 days. At the end of the trial, the survival rate (SR) of L. vannamei fed diets supplemented with different levels of T. suecica was significantly (p < .05) higher than the control diet. The highest weight gain and specific growth rate and the best feed conversion ratio were recorded on L. vannamei fed a diet supplemented with a 7.5 g/kg dried T. suecica. The highest protein, lipid and ash contents were obtained in L. vannamei fed the diet containing 7.5 g/kg T. suecica, when compared with the remaining tested diets. The gene expression of antioxidant genes SOD and GPx was the lowest in the T3 group in comparison with the control group. Meanwhile, expression level of IGF‐II was higher in the T2 group. The total heterotrophic bacterial count was significantly (p < .05) increased with the cumulative T. suecica level, while no significant (p > .05) differences were found in the total Vibrio count among treatments. Overall, the present results have shown that the diet supplemented with the highest inclusion level of dried T. suecica resulted in improved growth and nutrient utilization.  相似文献   
134.
Citrus, especially Kinnow, fruit yield and quality in Pakistan is not competitive with other countries, which could be mainly attributed to a lack of good nutrient management for citrus orchards. Many of the soils under these orchards have been reported as deficient in potassium (K). Therefore, work was initiated for improving citrus fruit yield, size, and quality through K nutrition management. Experiments were conducted in four districts of Punjab including Faisalabad, Toba Tek Singh, Jhang, and Sargodha and four rates of potash, i.e., 0, 50, 75 and 100 kg dipotassium oxide (K2O) ha?1 were applied using sulfate of potash (SOP) along with recommended rates of phosphorus (P) and nitrogen (N). Soils of all the selected sites were clay loam or sandy clay loam and deficient in K. The leaf analysis also showed that all the selected orchards were deficient in K. Application of K increased the fruit yield and quality but K at100 kg K2O ha?1 was more effective in increasing the fruit weight and size, and peel thickness than other K rates in all the selected orchards. Juice volume and percentage significantly increased when K was applied at 75 kg K2O ha?1 at all sites. Nutrient uptake like K, P, and N enhanced with the increase in K application rate, however, the highest calcium (Ca)+ magnesium (Mg) was recorded at 50 kg K2O ha?1. The results indicated that all rates of K application improved the fruit yield and quality and reduced fruit dropping, however, 75 kg K2O ha?1 rate was more effective as juice volume and percentage, total soluble solid (TSS)/acid ratio and nutrient uptake showed significant improvement.  相似文献   
135.
Interactive effects of silicon (Si) and high boron (B) on growth and yield of tomato (Lycopercison esculentum cv. ‘191 F1’) plants were studied. Treatments were: 1) control (B1), normal nutrient solution including 0.5 mg L?1 B (boron), 2) B1 +Si treatment: 0.5 mg L?1 boron plus 2 mM Si, 3) B2 treatment: 3.5 mg L?1 B, 4) B2 +Si treatment: 3.5 mg L?1 B plus 2 mM Si, 5) B3 treatment: 6.5 mg L?1 B, and 6) B3 +Si: 6.5 mg L?1 B plus 2 mM Si. High B reduced dry matter, fruit yield and chlorophyll (Chl) in tomato plants compared to the control treatment, but increased the proline accumulation. Supplementary Si overcame the deleterious effects of high B on plant dry matter, fruit yield and chlorophyll concentrations. High B treatments increased the activities of superoxide dismutase (SOD; EC 1.15.1.1), peroxidase (POD; EC. 1.11.1.7) and polyphenol oxidase (PPO; EC 1.10.3.1). However, supplementary Si in the nutrient solution containing high B reduced SOD and PPO activities in leaves, but POD activity remained unchanged. These data suggest that excess B-induced oxidative stress and alterations in the antioxidant enzymes. Boron (B) concentrations increased in leaves and roots in the elevated B treatment as compared to the control treatment. Concentrations of calcium (Ca) and potassium (K) were significantly lower in the leaves of plants grown at high B than those in the control plants. Supplementing the nutrient solution containing high B with 2 mM Si increased both nutrients in the leaves. These results indicate that supplementary Si can mitigate the adverse effects of high B on fruit yield and whole plant biomass in tomato plants.  相似文献   
136.
Abstract

Improvement of agricultural water use efficiency is of major concern with drought problems being one of the most important factors limiting grain production worldwide. Effective management of water for crop production in water-scarce areas requires efficient approaches. Increasing crop water use efficiency and drought tolerance by genetic improvement and physiological regulation may be a means to achieve efficient and effective use of water. A limited water supply inhibits the photosynthesis of plants, causes changes of chlorophyll contents and components and damage to photosynthetic apparatus. It also inhibits photochemical activities and decreases the activities of enzymes in plants. Water stress is one of the important factors inhibiting the growth and photosynthetic abilities of plants through disturbing the balance between the production of reactive oxygen species and the antioxidant defence, causing accumulation of reactive oxygen species which induce oxidative stress to proteins, membrane lipids and other cellular components. A number of approaches are being used to enhance water use efficiency and to minimize the detrimental effect of water stress in crop plants. Proper plant nutrition is a good strategy to enhance water use efficiency and productivity in crop plants. Plant nutrients play a very important role in enhancing water use efficiency under limited water supply. In this paper we discuss the possible effective techniques to improve water use efficiency and some macronutrients (nitrogen, phosphorus, potassium, calcium and magnesium), micronutrients (zinc, boron, iron, manganese, molybdenum and chloride), and silicon (a beneficial nutrient) in detail to show how these nutrients play their role in enhancing water use efficiency in crop plant.  相似文献   
137.
Assessment of salt tolerance at all growth stages is crucial to determine the overall tolerance of a crop. Salt tolerance of five tolerantILL 5845, ILL 6451, ILL 6788, ILL 6793 andILL 6796, three moderately tolerant ILL 6431. ILL 6770 andILL 6784, and three sensitiveILL 6210, ILL 6439 andILL 6778 accessions selected at the germination and seedling stages was assessed at the adult stage using sand culture sahnized with 0, 30, or 60 mol m?3 NaCl. A positive correlation was observed between degrees of salt tolerance at different growth stages in three tolerant accessionsILL 6451, ILL 6788 andILL 6793 which produced significantly higher seed yield than the other accessions. This was also affirmed in three sensitive and two moderately tolerant accessions (ILL 6770 andILL 6784) whose salt sensitivity was conferred consistently at all growth stages. In contrastILL 5845, andILL 6796 which were highly salt tolerant andILL 6431 which was moderately tolerant at the early growth stages had relatively low seed yield, hence showing a negative correlation between tolerances at different growth stages. High yielding accessionsILL 6451, ILL 6788 andILL 6793 in general, accumulated higher Na+ and higher or moderate Cl? in their shoots compared with the other accessions, thus showing a typical halophytic mechanism of salt inclusion. K/Na ratios of all the tolerant, moderately tolerant and sensitive accessions exceptILL 6784 andILL 6778 were less than 1, a suggested minimum level for normal functioning of many metabolic processes in plants. The present study shows that salt tolerance observed previously at the early growth stages is conferred at the adult stage in most of the accessions of lentil examined here; but for others in which no positive correlation was observed between different growth stages suggests that a combination of certain characters can be used as selection criterion for improving salinity tolerance in lentil through exploitation of inter- and intra-cultivar/line variation.  相似文献   
138.
Florfenicol (FFC) as a chloramphenicol’s derivative is a special broad-spectrum antibiotic that was used in veterinary clinics. In the present study, we investigated the effect of different doses of FFC on the humoral immune response of broiler chickens to Newcastle disease virus (NDV) vaccine under the impact of E. coli infection. In addition, the expression of the interferon-inducible genes (IRF7, 2′-5′OAS and Mx1) were analyzed in the spleen tissue of these chickens using quantitative real-time PCR (qRT-PCR). The non-treated group with FFC and non-infected with E. coli had the highest immune responses against NDV compared with the FFC treated groups. In the case of E. coli infection, the group treated with FFC (30 mg/Kg BWt) showed lower NDV HI and IgG ELISA Ab levels compared to the group treated with FFC (60 mg/Kg BWt). A dose dependent up-regulation was observed in the level of the interferon-alpha pathway related genes (IRF7 and 2′-5′OAS) in the FFC treated groups compared to the non-treated group. At the slaughter time, the numbers of adipocyte in the bone marrow were significantly higher with moderate atrophy of the hematopoietic lineages in the FFC treated birds compared to the non-treated birds. These results indicated that this FFC dosage dependent increase in the humoral immune responses against NDV vaccine could be attributed to its efficient therapeutic effect on the E. coli infection. However, the increase in the FFC dosage can negatively but temporarily affect the chicken body weights. Additionally, it can exert up regulation effect on the chicken innate immune response with moderate hypoplasia of the bone marrow cells.  相似文献   
139.
An experiment was conducted to evaluate the effect of zinc (Zn) application on five rice cultivars grown under salt stress conditions. Two salinity levels of 0 and 10 dS m?1 were created with sodium chloride (NaCl) and foliar spray of Zn (0.05%; Chelated-Zn) was applied. A decrease in growth and yield related parameters were observed under salt stress, which was ameliorated in plants that received Zn foliar spray. Similar effects of salinity and Zn foliar spray were noted on photosynthetic rate, transpiration rate, stomatal conductance, water use efficiency, and water relations of plants. Salt induced increase in sodium (Na) content and decrease in other macro- and micronutrients contents were also reversed by Zn. Other salt tolerance indicating parameters likSe total free amino acids and total soluble sugars increased under Zn spray, clearing its role in improving salt tolerance.  相似文献   
140.
Soil erosion is a threat to the water quality constituents of sediments and nutrients and can cause long-term environmental damages. One important parameter to quantify the risk of soil loss from erosion is the crop and cover management factor (C-factor), which represents how cropping and management practices affect the rates and potential risk of soil erosion. We developed remotely sensed data-driven models for dynamic predictions of C-factor by implementing dynamic land cover modeling using the SWAT (Soil and Water Assessment Tool) model on a watershed scale. The remotely sensed processed variables included the enhanced vegetation index (EVI), the fraction of photosynthetically active radiation absorbed by green vegetation (FPAR), leaf area index (LAI), soil available water content (AWC), slope gradient (SG), and ratio of area (AR) of every hydrologic response unit (HRU) to that of the total watershed, comprising unique land cover, soil type, and slope gradient characteristics within the Fish River catchment in Alabama, USA between 2001 and 2014. Linear regressions, spatial trend analysis, correlation matrices, forward stepwise multivariable regression (FSMR), and 2-fold cross-validation were conducted to evaluate whether there were possible associations between the C-factor and EVI with the successive addition of remotely sensed environmental factors. Based on the data analysis and modeling, we found a significant association between the C-factor and EVI with the synergy of the environmental factors FPAR, LAI, AWC, AR, and SG (predicted R2 (Rpred2) = 0.51; R2 = 0.68, n = 3 220, P < 0.15). The results showed that the developed FSMR model constituting the non-conventional factors AWC (Rpred2 = 0.32; R2 = 0.48, n = 3 220, P < 0.05) and FPAR (Rpred2= 0.13; R2 = 0.28, n = 3 220, P = 0.31) was an improved fit for the watershed C-factor. In conclusion, the union of dynamic variables related to vegetation (EVI, FPAR, and LAI), soil (AWC), and topography (AR and SG) can be utilized for spatiotemporal C-factor estimation and to monitor watershed erosion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号