首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2488篇
  免费   133篇
林业   211篇
农学   290篇
基础科学   31篇
  563篇
综合类   116篇
农作物   195篇
水产渔业   300篇
畜牧兽医   640篇
园艺   69篇
植物保护   206篇
  2023年   37篇
  2022年   73篇
  2021年   82篇
  2020年   100篇
  2019年   122篇
  2018年   152篇
  2017年   149篇
  2016年   119篇
  2015年   83篇
  2014年   116篇
  2013年   222篇
  2012年   177篇
  2011年   153篇
  2010年   131篇
  2009年   91篇
  2008年   105篇
  2007年   96篇
  2006年   82篇
  2005年   58篇
  2004年   49篇
  2003年   43篇
  2002年   30篇
  2001年   39篇
  2000年   34篇
  1999年   25篇
  1998年   18篇
  1997年   15篇
  1996年   9篇
  1995年   6篇
  1994年   7篇
  1993年   6篇
  1992年   11篇
  1991年   14篇
  1990年   13篇
  1989年   10篇
  1988年   11篇
  1987年   12篇
  1986年   7篇
  1985年   6篇
  1984年   7篇
  1983年   8篇
  1982年   5篇
  1981年   9篇
  1980年   5篇
  1979年   14篇
  1974年   8篇
  1973年   8篇
  1971年   7篇
  1969年   6篇
  1967年   4篇
排序方式: 共有2621条查询结果,搜索用时 15 毫秒
91.
The seasonal and annual variability of sensible heat flux (H), latent heat flux (LE), evapotranspiration (ET), crop coefficient (Kc) and crop water productivity (WPET) were investigated under two different rice environments, flooded and aerobic soil conditions, using the eddy covariance (EC) technique during 2008-2009 cropping periods. Since we had only one EC system for monitoring two rice environments, we had to move the system from one location to the other every week. In total, we had to gap-fill an average of 50-60% of the missing weekly data as well as those values rejected by the quality control tests in each rice field in all four cropping seasons. Although the EC method provides a direct measurement of LE, which is the energy used for ET, we needed to correct the values of H and LE to close the energy balance using the Bowen ratio closure method before we used LE to estimate ET. On average, the energy balance closure before correction was 0.72 ± 0.06 and it increased to 0.99 ± 0.01 after correction. The G in both flooded and aerobic fields was very low. Likewise, the energy involved in miscellaneous processes such as photosynthesis, respiration and heat storage in the rice canopy was not taken into consideration.Average for four cropping seasons, flooded rice fields had 19% more LE than aerobic fields whereas aerobic rice fields had 45% more H than flooded fields. This resulted in a lower Bowen ratio in flooded fields (0.14 ± 0.03) than in aerobic fields (0.24 ± 0.01). For our study sites, evapotranspiration was primarily controlled by net radiation. The aerobic rice fields had lower growing season ET rates (3.81 ± 0.21 mm d−1) than the flooded rice fields (4.29 ± 0.23 mm d−1), most probably due to the absence of ponded water and lower leaf area index of aerobic rice. Likewise, the crop coefficient, Kc, of aerobic rice was significantly lower than that of flooded rice. For aerobic rice, Kc values were 0.95 ± 0.01 for the vegetative stage, 1.00 ± 0.01 for the reproductive stage, 0.97 ± 0.04 for the ripening stage and 0.88 ± 0.03 for the fallow period, whereas, for flooded rice, Kc values were 1.04 ± 0.04 for the vegetative stage, 1.11 ± 0.05 for the reproductive stage, 1.04 ± 0.05 for the ripening stage and 0.93 ± 0.06 for the fallow period. The average annual ET was 1301 mm for aerobic rice and 1440 mm for flooded rice. This corresponds to about 11% lower total evapotranspiration in aerobic fields than in flooded fields. However, the crop water productivity (WPET) of aerobic rice (0.42 ± 0.03 g grain kg−1 water) was significantly lower than that of flooded rice (1.26 ± 0.26 g grain kg−1 water) because the grain yields of aerobic rice were very low since they were subjected to water stress.The results of this investigation showed significant differences in energy balance and evapotranspiration between flooded and aerobic rice ecosystems. Aerobic rice is one of the promising water-saving technologies being developed to lower the water requirements of the rice crop to address the issues of water scarcity. This information should be taken into consideration in evaluating alternative water-saving technologies for environmentally sustainable rice production systems.  相似文献   
92.
Accurate estimation of reference crop evapotranspiration (ETo) is required for several hydrological studies and thus, in the past, a number of ETo estimation methods have been developed with different degree of complexity and data requirement. The present study was carried out to develop artificial neural network (ANN) based reference crop evapotranspiration models corresponding to the ASCE’s best ranking conventional ETo estimation methods (Jensen et al. ASCE Manual and Rep. on Engrg. Pract. no. 70, 1990). Among the radiation methods, FAO-24 radiation (or Rad) method for arid and Turc method for humid region, and among the temperature methods, FAO-24 Blaney–Criddle (or BC) method were studied. The ANN architectures corresponding to the above three less data-intensive methods were developed for four CIMIS (California Irrigation Management Information System) stations, namely, Davis, Castroville, Mulberry, and West Side Field station. The comprehensive ANN architecture developed by Kumar et al. (J Irrig Drain Eng 128(4):224–233, 2002) corresponding to Penman–Monteith (PM) ETo for Davis was also tried for the other three stations. Daily meteorological data for a period of more than 10 years (01 January 1990 to 30 June 2000) were collected from these stations and were used to train, test, and validate the ANN models. Two learning schemes, namely, standard back-propagation with learning rate of 0.2 and standard back-propagation with momentum having learning rate of 0.2 and momentum term of 0.95 were considered. ETo estimation performance of the ANN models was compared with the FAO-56 PM method. It was found that the ANN models gave better closeness to FAO-56 PM ETo than the best ranking method in each category (radiation and temperature). Thus these models can be used for ETo estimation in agreement with climatic data availability, when not all required climatic variables are observed.  相似文献   
93.
Scarcity of water and emission of greenhouse gases (GHGs) are the two key environmental issues affecting crop production in India.Reducing the carbon footprint (CF) and water footprint (WF) of crop production can help to mitigate the environmental hazards that stem from GHG emissions and water scarcity.The CFs and WFs of three major cereal crops,rice,wheat,and maize,were estimated for the year 2014 under the environmental conditions in India,based on national statistics and other data sources.To...  相似文献   
94.
Deterioration of soil quality under resource-intensive modern agriculture in the face of global climate change poses a huge risk to food security. Because of the complex nature, estimators of soil quality often rely upon a limited set of soil attributes, along with statistical data reduction techniques, for developing quality indices, whilst overlooking biological aspects and regional climatic variability. This study screened the most suitable soil quality indexing approaches for a rice-oilseed-based cropping system in the lower Indo-Gangetic plains (IGP). For this, surface soil samples (0–15 cm) were collected from an ongoing long-term fertilizer experiment with a rice-mustard-sesame cropping system in the IGP. The following treatments were assessed for their effect on soil quality: T1-control, T2-NPK (recommended NPK doses), T3-NPKG (NPK + in situ green manuring), T4-NPKGB (NPK + in situ green manuring + biofertilizer) and T5-NPKF (NPK + farm yard manure FYM). We found that total organic carbon (TOC), β-glucosidase, CaCl2 extractable S, alkaline KMnO4 oxidizable N, activity of urease, amidase enzyme and mean weight diameter (MWD) were sensitive key indicators of soil quality. The NPKF treatment maintained the highest soil quality status (0.80–0.91), both under productivity and environmental protection goals, owing to the availability of decomposable carbon. Regression analysis showed a better agreement of equivalent rice yield with expert opinion (EO; R2 = 0.89) than principal component analysis (PCA; R2 = 0.76). Finally, we found that the expert opinion approach with the nonlinear scoring function was the best tool for soil quality assessment of the region.  相似文献   
95.
Transplanting of rice seedling in puddled soil is one of the most widely used cultivation practices. The present research is aimed at determining what specific implements are needed to obtain optimal puddle bed for transplantating. Puddling experiments were carried out by the use of pair of bullocks with traditional country plough (T1), pair of bullocks with lug wheel puddler (T2), power tiller with rotary puddler (T3), tractor with cage wheel and 9-tine cultivator (T4) and tractor with cage wheel and rotavator (T5). One summer ploughing was done at friable moisture condition (18.6% db) and then tilled soil was flooded to saturation (24 h) for preparation of puddled bed. Weeding efficiency, puddling depth, percentage increase in bulk density, puddling index, percolation rate and grain yield of paddy were studied for the above treatments. Puddling performance by different implements in comparison to the traditional animal drawn country plough (T1) shows that there is a definite reduction in time requirement for field preparation. Increase in weeding efficiency, bulk density, grain yield and puddling index were also observed. The highest values of weeding efficiency and puddling index were found 98.6% and 79.3, respectively, for rotavator (T5). The total time requirement for preparation of puddle field for treatment T4 (tractor with cultivator) was found to be the lowest (9.4 h ha−1) with 67% weeding efficiency and 62.7 puddling index as compared to all other alternatives tested. Energy requirement for preparation of puddle field was found highest (2390 MJ ha−1) for rotavator (T5) followed by T3, T4, T1, and T2 treatments.  相似文献   
96.
We investigated the effects of Arbuscular Mycorrhiza (AM) fungi and various phosphorus (P) levels on the distribution and availability of P in dominant soils of Bihar, India. Potassium chloride (KCl)-P (labile P), sodium hydroxide (NaOH)-P (Fe-Al-bound P), hydrochloric acid (HCl)-P (Ca-bound P), and residual P (Res-P) fractions were analyzed in the soils under maize plant. Ca-bound P was the most abundant P fraction in the alkaline soils (65% of the total P) followed by neutral soil (35% of the total P), whereas it was less abundant (<4%) in the acidic soil type. Fe-Al-bound P was found to be highest for acidic soil (65% of the total P). Soils under the inoculation with Glomus mossae and control gave the highest and lowest values (15.63 mg kg?1 and 10.74 mg kg?1 respectively) for the labile fraction which was similar to the organically bound residual fractions of P (200.17 mg kg?1 and 193.66 mg kg?1 respectively. Inoculation of the soils with AM fungi leads to the redistribution of P fractions in different soils which consequently helps in improvement of available P in soil conducive for plant uptake.  相似文献   
97.
Mungbean is an important food grain legume with high economic status. It has an excellent source of dietary protein and nutritional health benefits, particularly for the vegetarians. It increases soil fertility and also plays an imperative role in major cropping systems due to its short life span. Production of mungbean is still decreasing due to its susceptibility towards various environmental stress factors. Salt stress is one of the most prevailing abiotic stress imposing threats for agriculture food crops along with increasing world population and limited natural resources. Fewer efforts have been made to develop an improved variety of mungbean. The present review summarizes the adverse effects of salt stress and mungbean response at the physiological and molecular level. It covers recent studies on introgression of useful traits in mungbean for its better adaptability and survival under stressed conditions. Modern biotechnological approaches and traditional breeding methods may assist the development of salt-tolerant cultivars of mungbean for salinity-affected area in arid and semi-arid regions. Researchers involved in this area should keep this goal on priority for sustainable mungbean production. Availability of protein-rich food may help to reduce the problem of malnutrition in poor families and national food security issue for a continuous rising population.  相似文献   
98.
99.
Azadirachtin A enriched concentrate containing 60% active ingredient (a.i.) was prepared from the methanolic extract of the de-fatted neem (Azadirachta indica A. Juss) seed kernels. Azadirachtins A, B, and H, the three major bioactive constituents of neem seed kernel, were purified from this methanolic concentrate by employing reverse phase medium-pressure liquid chromatography (MPLC), using methanol-water solvent system as an eluant. The three pure azadirachtin congeners thus obtained were characterized by their unique mass spectral fragmentation, using electrospray probe in positive ion mode (ESI). All three azadirachtins exhibited nematicidal and antifungal activities. Azadirachtin B was the most effective against the reniform nematode Rotylenchulus reniformis (EC(50) 96.6 ppm), followed by Azadirachtin A (119.1 ppm) and H (141.2 ppm). At 200-ppm concentration, the test compounds caused 50-65% mortality of Caenorhabditis elegans nematode. Azadirachtin H showed the highest activity against the phytophagous fungi Rhizoctonia solani (EC(50) 63.7 ppm) and Sclerotium rolfsii (EC(50) 43.9 ppm), followed by B and A. The isolation of pure azadirachtins A, B, and H directly by MPLC purification from its concentrate and their characterization by ESIMS are unique and less time-consuming.  相似文献   
100.
In plants exposed to high metal concentrations, mechanisms to counteract the oxidative burst are crucial for its survival. To investigate the temporal sequence of physiological reactions of peanut seedlings (Arachis hypogaea L.) to cadmium exposure, seeds were cultured in increasing concentrations of CdCl2, ranging from 50 to 300 μM. Germination frequency was scored, and the distributions of Cd in root, stem, and leaves were determined after 2 and 4 weeks of culture. Lipid peroxidation and activities of antioxidative enzymes including catalase (CAT; EC 1.11.1.6) and guaiacol peroxidase (GPX; EC 1.11.1.7) were estimated in these three parts of the plant. Germination of seedlings was not affected, but the growth of seedlings was severely suppressed with increasing concentrations of CdCl2 and incubation period. Pattern of Cd distribution in the three organs varied with concentration and period of exposure to Cd. Increased lipid peroxidation was detected in all parts of the developing seedlings with increasing metal accumulation. Catalase and guaiacol peroxidase activity varied in the three parts of the seedlings with concentration of Cd and incubation period. Guaiacol peroxidase activity appears to be more active in scavenging the reactive oxygen species in developing peanut seedlings. The results of the present experiment demonstrate the advantages of a tissue‐culture model system in studying the complex network of interactions of various factors in stress tolerance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号