首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3044篇
  免费   194篇
  国内免费   4篇
林业   202篇
农学   74篇
基础科学   22篇
  498篇
综合类   714篇
农作物   67篇
水产渔业   246篇
畜牧兽医   1103篇
园艺   99篇
植物保护   217篇
  2024年   8篇
  2023年   22篇
  2022年   31篇
  2021年   72篇
  2020年   82篇
  2019年   95篇
  2018年   83篇
  2017年   79篇
  2016年   93篇
  2015年   70篇
  2014年   82篇
  2013年   120篇
  2012年   199篇
  2011年   234篇
  2010年   150篇
  2009年   103篇
  2008年   227篇
  2007年   214篇
  2006年   203篇
  2005年   194篇
  2004年   195篇
  2003年   189篇
  2002年   180篇
  2001年   34篇
  2000年   26篇
  1999年   29篇
  1998年   16篇
  1997年   7篇
  1996年   19篇
  1995年   15篇
  1994年   13篇
  1993年   9篇
  1992年   8篇
  1991年   13篇
  1990年   7篇
  1989年   10篇
  1988年   8篇
  1987年   12篇
  1986年   8篇
  1985年   9篇
  1984年   5篇
  1983年   4篇
  1982年   7篇
  1981年   3篇
  1980年   7篇
  1977年   3篇
  1976年   5篇
  1974年   8篇
  1973年   3篇
  1957年   2篇
排序方式: 共有3242条查询结果,搜索用时 15 毫秒
201.
We used 14C tracers to determine photosynthate distribution in cherrybark oak (Quercus pagoda Raf.) seedling sprouts following release from competing mid-story vegetation. Fall acquisition of labeled photosynthates by seedlings followed expected source-sink patterns, with root and basal stem tissues serving as the primary sinks. Four months after the seedlings had been labeled with 14C, they were clipped to induce sprouting. First-flush stem and leaf tissues of the resulting seedling sprouts were the primary sinks for labeled photosynthates stored in root tissues. Second-flush stem and leaf tissues, and first-flush stem and leaf tissues the following growing season, were not primary sinks for labeled photosynthates stored in root tissues despite the high radioactivity in root tissues. Root tissues appeared to deposit photosynthates in a layering process whereby the last photosynthates stored in new xylem were the first to be depleted during the initiation of a growth flush the following spring. There were more labeled photosynthates in roots of released seedling sprouts compared with non-released seedling sprouts, indicating increased vigor of released seedling sprouts in response to greater light availability. In contrast, stem and source leaf tissues of non-released seedling sprouts contained greater percentages of labeled photosynthates compared with released seedling sprouts, indicating either greater sink strength or poorly developed xylem and phloem pathways that created inefficiencies in distribution to root tissues. The 14C distribution coefficients confirmed the distribution patterns and provided additional information on the important sinks in released and non-released cherrybark oak seedling sprouts.  相似文献   
202.
Leaf reflectance at visible and near-infrared wavelengths (400-1000 nm) is related primarily to pigmentation, leaf structure and water content, and is an important tool for studying stress physiology and relationships between plants and their growth environment. We studied reflectance of two co-occurring Alaskan conifers, black spruce (Picea mariana (Mill.) BSP) and white spruce (Picea glauca (Moench) Voss), at elevations from 60 to 930 m a.s.l. along a latitudinal gradient from 61 degrees to 68 degrees N. Black spruce samples were collected from 24 sites and white spruce from 30 sites. Overall, reflectance spectra of the two species were similar, but from 400 to 700 nm, needle reflectance was consistently higher in black spruce than in white spruce (all P 相似文献   
203.
Increasing global temperatures could potentially cause large increases in root respiration and associated soil CO2 efflux. However, if root respiration acclimates to higher temperatures, increases in soil CO2 efflux from this source would be much less. Throughout the snow-free season, we measured fine root respiration in the field at ambient soil temperature in a sugar maple (Acer saccharum Marsh.) forest and a red pine (Pinus resinosa Ait.) plantation in Michigan. The objectives were to determine effects of soil temperature, soil water availability and experimental N additions on root respiration rates, and to test for temperature acclimation in response to seasonal changes in soil temperature. Soil temperature and soil water availability were important predictors of root respiration and together explained 76% of the variation in root respiration rates in the red pine plantation and 71% of the variation in the sugar maple forest. Root N concentration explained an additional 6% of the variation in the sugar maple trees. Experimental N additions did not affect root respiration rates at either site. From April to November, root respiration rates measured in the field increased exponentially with increasing soil temperature. For sugar maple, long-term Q10 values calculated from the field data were slightly, but not significantly, less than short-term Q10 values determined for instantaneous temperature series conducted in the laboratory (2.4 versus 2.62.7). For red pine, long-term and short-term Q10 values were similar (3.0 versus 3.0). Sugar maple root respiration rates at constant reference temperatures of 6, 18 and 24 degrees C were measured in the laboratory at various times during the year when field soil temperatures varied from 0.4 to 16.8 degrees C. No relationship existed between ambient soil temperature just before sampling and root respiration rates at 6 and 18 degrees C (P = 0.37 and 0.86, respectively), and only a very weak relationship was found between ambient soil temperature and root respiration at 24 degrees C (P = 0.08, slope = 0.09). We conclude that root respiration in these species undergoes little, if any, acclimation to seasonal changes in soil temperature.  相似文献   
204.
Field bioassays were conducted in south-central Alaska in a stand of Lutz spruce, Picea × lutzii, to determine whether a semiochemical interruptant (verbenone and trans-conophthorin) and/or a defense-inducing plant hormone (methyl jasmonate, MJ) could be used to protect individual standing trees from bark beetle attack. During two experiments (initiated in May 2004 and 2005, respectively), attacks by Ips perturbatus on standing trees were induced by using a three-component aggregation pheromone (ipsenol, cis-verbenol, and ipsdienol) and prevented by using the interruptant. In 2005, treatments from 2004 were repeated and additional treatments were evaluated by using MJ spray or injection with and without the interruptant. Aggregation began before 3 or 7 June, and attack density was monitored through 3 or 16 August. During both years, tree mortality caused by I. perturbatus was recorded twice (in August, and in May of the following year). In both experiments, attack density was greatest on trees baited with the three-component attractive pheromone, but was significantly reduced by addition of the semiochemical interruptant to trees baited with the attractant. There were no significant differences in attack density between attractant + interruptant-treated trees and unbaited trees. In 2004, mortality was highest among attractant-baited trees, whereas addition of the interruptant significantly reduced the level of initial (10 week post-treatment) and final (54 week post-treatment) mortality. In 2005, no significant reduction in attack density occurred on trees baited with the attractant when MJ was sprayed or injected. The highest initial (10.6 week post-treatment) and final (49.4 week post-treatment) mortality was observed among trees that had been injected with MJ and baited with the attractant. Mortality at the final assessment was significantly lower in all other treatment groups. As in 2004, addition of the interruptant to attractant-baited trees significantly reduced the level of final mortality compared to attractant-baited trees. MJ was not attractive or interruptive to I. perturbatus or associated bark beetles in a flight trapping study. However, MJ-treated trees (sprayed or injected) exuded copious amounts of resin on the bark surface. Anatomical analyses of felled trees from four treatment groups [Tween (solvent)-sprayed, MJ-sprayed, Tween-injected, and MJ-injected + attractant baited] showed that treatment with MJ increased the number and size of resin ducts produced following treatment. These analyses also revealed a reduction in radial growth in MJ-treated trees. Our results show that during both years, treatment with a simple, two-component interruptant system of verbenone and trans-conophthorin significantly reduced I. perturbatus attack density and tree mortality on attractant-baited trees and provided a full year of protection from bark beetle attack.  相似文献   
205.
A comprehensive analysis of the variation in wheat grain ash content has not been previously conducted. This study assessed the relative contribution of genotype and environment to variation in ash content, with a particular aim of ascertaining the potential for manipulating the trait using contemporary adapted germplasm. A total of 2,240 samples were drawn from four years of multilocation field plots grown in the wheat production areas of Oregon and Washington states. Genotypes included commercial cultivars and advanced breeding lines of soft and hard winter, and soft and hard spring wheats with red and white kernel color, several soft white club wheats, and one soft white spring waxy wheat cultivar. In addition to ash, protein content, test weight, and Single Kernel Characterization System kernel hardness, weight and size were also measured. In total, 20 separate fully balanced ANOVA results were conducted. Whole model R2 values were highly significant, 0.62–0.91. Nineteen of the 20 ANOVA results indicated significant genotype effects, but the effects were not large. In contrast, environment effects were always highly significant with F values often one to two orders of magnitude larger than the genotype F values. The grand mean for all samples was 1.368% ash. For individual data sets, genotype means across environments varied ≈0.1–0.3% ash. The genotypes judged noteworthy because they had the highest least squares mean ash content were OR9900553 and ClearFirst soft white winter, NuHills hard red winter, Waxy‐Pen and Cataldo soft white spring, and WA8010 and Lochsa hard spring wheats. Genotypes with lowest least squares mean ash were Edwin (club) soft white winter, OR2040073H hard red winter, WA7952 soft white spring, and WA8038 hard spring wheats. In conclusion, wheat grain ash is more greatly influenced by crop year and location than by genotype. However, sufficient genotype variation is present to plausibly manipulate this grain trait through traditional plant breeding.  相似文献   
206.
Plant-soil feedbacks are gaining attention for their ability to determine plant community development. Plant-soil feedback models and research assume that plant-soil interactions occur within days to weeks, yet, little is known about how quickly and to what extent plants change soil community composition. We grew a dominant native plant (Pseudoroegneria spicata) and a dominant non-native plant (Centaurea diffusa) separately in both native- and non-native-cultivated field soils to test if these species could overcome soil legacies and create new soil communities in the short-term. Soil community composition before and after plant growth was assessed in bulk and rhizosphere soils using phospholipid fatty acid analyses. Nematode abundance and mycorrhizal colonization were also measured following plant growth. Field-collected, native-cultivated soils showed greater bacterial, Gram (−), fungal, and arbuscular mycorrhizal PLFA abundance and greater PLFA diversity than field-collected, non-native-cultivated soils. Both plant species grew larger in native- than non-native-cultivated soils, but neither plant affected microbial composition in the bulk or rhizosphere soils after two months. Plants also failed to change nematode abundance or mycorrhizal colonization. Plants, therefore, appear able to create microbial legacies that affect subsequent plant growth, but contrary to common assumptions, the species in this study are likely to require years to create these legacies. Our results are consistent with other studies that demonstrate long-term legacies in soil microbial communities and suggest that the development of plant-soil feedbacks should be viewed in this longer-term context.  相似文献   
207.
Information on N cycling in dryland crops and soils as influenced by long-term tillage and cropping sequence is needed to quantify soil N sequestration, mineralization, and N balance to reduce N fertilization rate and N losses through soil processes. The 21-yr effects of the combinations of tillage and cropping sequences was evaluated on dryland crop grain and biomass (stems + leaves) N, soil surface residue N, soil N fractions, and N balance at the 0–20 cm depth in Dooley sandy loam (fine-loamy, mixed, frigid, Typic Argiboroll) in eastern Montana, USA. Treatments were no-tilled continuous spring wheat (Triticum aestivum L.) (NTCW), spring-tilled continuous spring wheat (STCW), fall- and spring-tilled continuous spring wheat (FSTCW), fall- and spring-tilled spring wheat–barley (Hordeum vulgare L.) (1984–1999) followed by spring wheat–pea (Pisum sativum L.) (2000–2004) (FSTW-B/P), and spring-tilled spring wheat–fallow (STW-F). Nitrogen fractions were soil total N (STN), particulate organic N (PON), microbial biomass N (MBN), potential N mineralization (PNM), NH4-N, and NO3-N. Annualized crop grain and biomass N varied with treatments and years and mean grain and biomass N from 1984 to 2004 were 14.3–21.2 kg N ha−1 greater in NTCW, STCW, FSTCW, and FSTW-B/P than in STW-F. Soil surface residue N was 9.1–15.2 kg N ha−1 greater in other treatments than in STW-F in 2004. The STN at 0–20 cm was 0.39–0.96 Mg N ha−1, PON 0.10–0.30 Mg N ha−1, and PNM 4.6–9.4 kg N ha−1 greater in other treatments than in STW-F. At 0–5 cm, STN, PON, and MBN were greater in STCW than in FSTW-B/P and STW-F. At 5–20 cm, STN and PON were greater in NTCW and STCW than in STW-F, PNM and MBN were greater in STCW than in NTCW and STW-F, and NO3-N was greater in FSTW-B/P than in NTCW and FSTCW. Estimated N loss through leaching, volatilization, or denitrification at 0–20 cm depth increased with increasing tillage frequency or greater with fallow than with continuous cropping and ranged from 9 kg N ha−1 yr−1 in NTCW to 46 kg N ha−1 yr−1 in STW-F. Long-term no-till or spring till with continuous cropping increased dryland crop grain and biomass N, soil surface residue N, N storage, and potential N mineralization, and reduced N loss compared with the conventional system, such as STW-F, at the surface 20 cm layer. Greater tillage frequency, followed by pea inclusion in the last 5 out of 21 yr in FSTW-B/P, however, increased N availability at the subsurface layer in 2004.  相似文献   
208.
Welsh et al. [Welsh, H.H., Jr. Pope, K.L., Wheeler, C.A., 2008. Using multiple metrics to assess the effects of forest succession on population status: a comparative study of two terrestrial salamanders in the US Pacific Northwest. Biological Conservation 141, pp. 1149–1160] argued for the use of four metrics to monitor population status of two terrestrial amphibians, the Siskiyou Mountains (Plethodon stormi) and Del Norte (Plethodon elongatus) salamanders. We show that inherent problems exist with Welsh et al.’s application of all four of these metrics, and that their inferences about population status are likely to be uncertain as a consequence and potentially misleading to managers. Welsh et al. (2008) used data from different populations and different years to estimate detection probabilities for both P. elongatus and P. stormi, a decision which assumes that detection probabilities do not differ across sites and populations are closed. In addition, Welsh et al. (2008) present count data for both salamanders, a metric that assumes capture probability does not vary by age, gender, size, other individual characteristics, and most importantly in their application, habitat characteristics. Welsh et al. (2008) estimated survival based upon age ratios. Age ratios are known to be biased when immigration and emigration are unequal Conn et al. [Conn, P.B., Doherty, P.F., Jr. Nichols, J.D., 2005. Comparative demography of New World populations of thrushes (Turdus spp.): comment. Ecology 86, pp. 2536–2541]. In source-sink systems, immigration and emigration are expected to be unequal. Thus, the use of this estimation technique to characterize survival in source-sink systems is invalid unless it can be shown that immigration and emigration are equal, a rare occurrence in source-sink systems. The final metric used by Welsh et al. (2008) was an index of body condition, i.e., the residuals of a least squares regression of mass on the length. Several recent articles have outlined a number of potential problems with the technique and a theoretically more robust and efficient alternative has been published. Unfortunately, Welsh et al. (2008) did not provide the details (model diagnostic statistics, tests of assumptions) needed to assess whether or not their analyses of body condition may be accurate. We think that evaluation of specific hypotheses, well-designed sampling programs, and methods such as mark–recapture and ratio sampling are more likely to provide reliable inference than re-analysis of old data sets that were collected for other purposes and obsolete methods (i.e., counting individuals on single occasions) that are known to be flawed. We agree that potential forest management impacts to sensitive taxa require evaluation and monitoring, and that changes in occupancy and abundance are useful metrics for this task (while recognizing that, when feasible to collect, information about reproductive success and survival is superior). However, reliable inference about potential impacts can only be made if reliable methods are employed and if critical assumptions receive empirical evaluation. We offer several suggestions to strengthen inference about management treatments.  相似文献   
209.
The response of faba bean to the application of four rates of gypsum (0, 2.5, 5.0, 10.0 t ha−1) to a non-saline, alkaline sodic soil was measured in terms of grain yield, dry matter (DM) production, N accumulation and the proportional dependence of the legume on symbiotic N2 fixation (P atm). A yield-independent, time-integrated 15N-dilution model was used to estimate symbiotic dependence. A significant decrease in the exchangeable sodium percentage and significant increases in exchangeable Ca++ and the Ca++:Mg++ ratio in the 0–10-cm soil layer were measured 30 months after application of 10 t ha−1 gypsum. Despite low and erratic rainfall during crop growth, faba bean DM and N uptake responded positively to gypsum application. The symbiotic dependence of the legume at physiological maturity was little affected by sodicity (P atm = 0.74 at zero gypsum and 0.81–0.82 at 2.5–10 t ha−1 gypsum). The increase in fixed N due to gypsum application was mainly due to increases in legume DM and total N uptake. At 10 t ha−1 of gypsum, faba bean fixed more than 200 kg N ha−1 in above-ground biomass.  相似文献   
210.
Effect of storage on wall-bound phenolics in green asparagus   总被引:2,自引:0,他引:2  
The cell walls of green asparagus spears have been analyzed for their phenolic and carbohydrate composition as modified by postharvest storage. Esterified phenolic components were released by sequential alkaline hydrolysis and identified and quantified by diode array HPLC. Significant quantities of ferulic acid (FA) and its derivatives were found to increase at least 3-fold during storage, particularly in walls from the lower parts of the stem, where accompanying changes in sugar composition were also observed. In fresh asparagus, >60% of the total FA was in the form of diferulic acid, and this increased to approximately 70% after 3 days of storage. The main FA dehydrodimers were 8-8-, 8-O-4-, and 8-5-diferulates. These have been detected in other monocotyledonous and dicotyledonous plants, but as a smaller proportion of the total FA. The possible roles phenolic esters might have in relation to the mechanical, textural, and wound-response properties of asparagus spears are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号