首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3584篇
  免费   215篇
  国内免费   7篇
林业   257篇
农学   105篇
基础科学   26篇
  611篇
综合类   808篇
农作物   93篇
水产渔业   284篇
畜牧兽医   1252篇
园艺   98篇
植物保护   272篇
  2024年   9篇
  2023年   27篇
  2022年   35篇
  2021年   85篇
  2020年   84篇
  2019年   107篇
  2018年   95篇
  2017年   103篇
  2016年   112篇
  2015年   80篇
  2014年   91篇
  2013年   130篇
  2012年   235篇
  2011年   267篇
  2010年   171篇
  2009年   125篇
  2008年   273篇
  2007年   255篇
  2006年   220篇
  2005年   215篇
  2004年   220篇
  2003年   213篇
  2002年   201篇
  2001年   40篇
  2000年   29篇
  1999年   33篇
  1998年   21篇
  1997年   10篇
  1996年   20篇
  1995年   20篇
  1994年   15篇
  1993年   12篇
  1992年   6篇
  1991年   18篇
  1990年   10篇
  1989年   20篇
  1988年   10篇
  1987年   12篇
  1986年   15篇
  1985年   13篇
  1984年   9篇
  1983年   7篇
  1982年   11篇
  1980年   7篇
  1977年   8篇
  1976年   9篇
  1975年   8篇
  1974年   10篇
  1973年   5篇
  1969年   6篇
排序方式: 共有3806条查询结果,搜索用时 15 毫秒
101.
Salt marsh ecosystems in Louisiana are at high risk of an oil contamination event while remediation of these systems is mainly limited to intrinsic bioremediation due to the physical sensitivity of salt marshes. This study investigated both the intrinsic and nutrient enhanced rates of crude oil degradation both in microcosm and core studies. In addition, limiting elements, loading rates and optimum nitrogen forms (NH 4 + or NO 3 - ) were determined. Salt marshes have relatively low intrinsic degradation rates (0–3.9% day-1) of the alkane component (C11-C44) but high rates (8–16% day-1) of degradation of the polycyclic aromatic hydrocarbon (PAH) fraction (naphthalene, C1, and C2-Naphthalene and Phenanthrene, C1, and C2-Phenanthrene). Additions of nitrogen statistically enhanced degradation of many alkanes and total PAHs while naturally present phosphorous was found to be sufficient. Nitrogen was found to be most effective if applied as NH 4 + in the range of 100-500-N mg kg-1 of soil producing a pore water range of 100-670-N mg L-1. Core studies indicate that similar trends are observed when applying fertilizers to intact portions of salt marsh.  相似文献   
102.
Soil and crop management practices may alter the quantity, quality, and placement of plant residues that influence soil C and N fractions. We examined the effects of two tillage practices [conventional till (CT) and no-till (NT)] and five crop rotations [continuous spring wheat (Triticum aestivum L.) (CW), spring wheat–fallow (W–F), spring wheat–lentil (Lens culinaris Medic.) (W–L), spring wheat–spring wheat–fallow (W–W–F), and spring wheat–pea (Pisum sativum L.)–fallow (W–P–F)] on transient land previously under 10 years of Conservation Reserve Program (CRP) planting on the amount of plant biomass (stems + leaves) returned to the soil from 1998 to 2003 and soil C and N fractions within the surface 20 cm in March 2004. A continued CRP planting was also included as another treatment for comparing soil C and N fractions. The C and N fractions included soil organic C (SOC), soil total N (STN), microbial biomass C and N (MBC and MBN), potential C and N mineralization (PCM and PNM), and NH4-N and NO3-N contents. A field experiment was conducted in a mixture of Scobey clay loam (fine-loamy, mixed, Aridic Argiborolls) and Kevin clay loam (fine, montmorillonitic, Aridic Argiborolls) in Havre, MT, USA. Plant biomass yield varied by crop rotation and year and mean annualized biomass was 45–50% higher in CW and W–F than in W–L. The SOC and PCM were not influenced by treatments. The MBC at 0–5 cm was 26% higher in W–W–F than in W–F. The STN and NO3-N at 5–20 cm and PNM at 0–5 cm were 17–1206% higher in CT with W–L than in other treatments. Similarly, MBN at 0–5 cm was higher in CT with W–L than in other treatments, except in CT with W–F and W–P–F. Reduction in the length of fallow period increased MBC and MBN but the presence of legumes, such as lentil and pea, in the crop rotation increased soil N fractions. Six years of tillage and crop rotation had minor influence on soil C and N storage between croplands and CRP planting but large differences in active soil C and N fractions.  相似文献   
103.
High concentrations of heavy metals are known to be toxic to many soil organisms. The effects of long-term exposure to lower levels of metals on the soil microbial community are, however, less well understood. The southern Pennines of the U.K. are characterised by expanses of ombrotrophic peat soils that have experienced deposition of high levels of heavy metals since the mid to late 1800s. Concentrations of metals in the peat remain high but the effect of the contamination on the in-situ microbial communities is unknown. Geochemical and molecular polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and sequencing techniques were used to derive new information on the metal chemistry and microbial populations in peat soils from six locations in the southern Pennines. All sites were highly acidic (pH 3.00–3.14) with high concentrations of potentially toxic heavy metals, particularly porewater Zn and particulate-associated Pb. The results also reveal a split in site characteristics between the most polluted sites with the highest levels of bioavailable metals (Bleaklow, FeatherBed Moss and White Hill) and those with much lower bioavailable metals (Cowms Moor, Holme Moss and Round Hill). There was no difference in the number of dominant bacterial species between the sites but there were significant differences in the species composition. At the three sites with the highest levels of bioavailable metals, bacterial species with a high similarity to acidophilic sulphur- and iron-oxidizing bacteria and those from high metal environments were detected. The transformations carried out by these metal mobilising and acid producing bacteria may make heavy metals more bioavailable and therefore more toxic to higher organisms. Bacteria with similarity to those typically found in forest and grassland soils were documented at the three sites with the lowest levels of bioavailable metals. The data highlight the need for further studies to elucidate the species diversity and functionality of bacteria in heavy metal contaminated peats in order to assess implications for moorland restoration.  相似文献   
104.
Lipase-catalyzed synthesis of lipophilic phenolic antioxidants was carried out with a concentrate of n-3 polyunsaturated fatty acids (PUFAs), recovered from oil extracted from salmon ( Salmon salar ) byproduct. Vanillyl alcohol and rutin were selected for the esterification reaction, and obtained esters yields were 60 and 30%, respectively. The antioxidant activities of the esters were compared with those of commercial butylated hydroxytoluene (BHT) and α-tocopherol using DPPH radical scavenging and thiobarbituric acid assays. In the DPPH assay, rutin esters showed better activity than vanillyl esters, and on the contrary in lipophilic medium, vanillyl esters were found to be superior to rutin esters. In bulk oil system, the antioxidant activities of rutin and vanillyl derivatives were lower than that of BHT and α-tocopherol, but in emulsion, they showed better activity than α-tocopherol. By attaching to natural phenolics, the PUFAs are protected against oxidation, and PUFA improves the hydrophobicity of the phenolic, which could enhance its function in lipid systems.  相似文献   
105.
Plant-soil feedbacks are gaining attention for their ability to determine plant community development. Plant-soil feedback models and research assume that plant-soil interactions occur within days to weeks, yet, little is known about how quickly and to what extent plants change soil community composition. We grew a dominant native plant (Pseudoroegneria spicata) and a dominant non-native plant (Centaurea diffusa) separately in both native- and non-native-cultivated field soils to test if these species could overcome soil legacies and create new soil communities in the short-term. Soil community composition before and after plant growth was assessed in bulk and rhizosphere soils using phospholipid fatty acid analyses. Nematode abundance and mycorrhizal colonization were also measured following plant growth. Field-collected, native-cultivated soils showed greater bacterial, Gram (−), fungal, and arbuscular mycorrhizal PLFA abundance and greater PLFA diversity than field-collected, non-native-cultivated soils. Both plant species grew larger in native- than non-native-cultivated soils, but neither plant affected microbial composition in the bulk or rhizosphere soils after two months. Plants also failed to change nematode abundance or mycorrhizal colonization. Plants, therefore, appear able to create microbial legacies that affect subsequent plant growth, but contrary to common assumptions, the species in this study are likely to require years to create these legacies. Our results are consistent with other studies that demonstrate long-term legacies in soil microbial communities and suggest that the development of plant-soil feedbacks should be viewed in this longer-term context.  相似文献   
106.
A simple trapping procedure for concentration of volatile organic compounds present in a head space and the subsequent analysis of the retained compounds by combined gas chromatographymass spectrometry is described. The procedure was used to study the organic metabolites evolved from various soils when they were amended with glucose and incubated under argon. A number of organic acids, alcohols, aldehydes and esters were evolved during a 4 week period. Less than 10 per cent of the added carbon was recovered as organic compounds, which was largely due to poor recovery of volatile organic acids from soil. Some implications of the observations to microbial ecology are discussed.  相似文献   
107.
Commercial cultivation of Bt cotton produced higher boll load which led to stiff inter-original competition for photosynthates, resulting in early cessation of growth (premature senescence) due to more availability of sink and less sources. To overcome this problem, field experiment was conducted during 2011 and 2012 using five treatments of plant growth manipulation viz. no fruiting branch removal (F1), removal of first fruiting branch (F2), removal of first and second fruiting branch (F3), removal of all squares from first fruiting branch (F4), removal of all squares from first and second fruiting branches (F5), and three potassium (K) application rates viz. 50 kg ha?1 (K1), 100 kg ha?1 (K2), and 150 kg ha?1 (K3). More nodes above white flower were recorded in F5, followed by F3, while minimum were recorded in F1. Among potassium levels, maximum nodes above white flower were recorded in K3 followed by K2 and K1 during both years of study. Plant height recorded at physiological cutout stage or at maturity stage showed that plants gained more height with removal of all squares from first tosecond fruiting branches with higher potassium dose. Leaf K increased with increasing applied potassium and also with square/branch removal. So early removal of squares/fruiting branches along with higher potassium dose helped in delaying canopy senescence in Bt cotton.  相似文献   
108.
Coastal Brook Trout (Salvelinus fontinalis) populations are found from northern Canada to New England. The extent of anadromy generally decreases with latitude, but the ecology and movements of more southern populations are poorly understood. We conducted a 33‐month acoustic telemetry study of Brook Trout in Red Brook, MA, and adjacent Buttermilk Bay (marine system) using 16 fixed acoustic receivers and surgically implanting acoustic transmitters in 84 individuals. Tagged Brook Trout used the stream, estuary (50% of individuals) and bay (10% of individuals). Movements into full sea water were brief when occurring. GAMM models revealed that transitions between habitat areas occurred most often in spring and fall. Environmental data suggest that use of the saline environment is limited by summer temperatures in the bay. Movements may also be related to moon phase. Compared to more northern coastal populations of Brook Trout, the Red Brook population appears to be less anadromous overall, yet the estuarine segment of the system may have considerable ecological importance as a food resource.  相似文献   
109.
Carbon (C) sequestration potential was quantified for five tree species, commonly used in tree-based intercropping (TBI) and for conventional agricultural systems in southern Ontario, Canada. In the 25-year-old TBI system, hybrid poplar (Populus deltoides × Populus nigra clone DN-177), Norway spruce (Picae abies), red oak (Quercus rubra), black walnut (Juglans nigra), and white cedar (Thuja occidentalis) were intercropped with soybean (Glycine max). In the conventional agricultural system, soybean was grown as a sole crop. Above- and belowground tree C Content, soil organic C, soil respiration, litterfall and litter decomposition were quantified for each tree species in each system. Total C pools for hybrid poplar, white cedar, red oak, black walnut, Norway spruce and a soybean sole-cropping system were 113.4, 99.4, 99.2, 91.5, 91.3, and 71.1 t C ha?1, respectively at a tree density of 111 trees ha?1, including mean tree C content and soil organic C stocks. Net C flux for hybrid poplar, white cedar, red oak, black walnut, Norway spruce and soybean sole-crop were 2.1, 1.4, 0.8, 1.8, 1.6 and ?1.2 t C ha?1 year?1, respectively. Results presented suggest greater atmospheric CO2 sequestration potential for all five tree species when compared to a conventional agricultural system.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号