首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   224篇
  免费   2篇
林业   22篇
农学   3篇
  55篇
综合类   13篇
农作物   13篇
水产渔业   38篇
畜牧兽医   72篇
园艺   3篇
植物保护   7篇
  2024年   4篇
  2023年   7篇
  2022年   8篇
  2021年   9篇
  2020年   10篇
  2019年   13篇
  2018年   6篇
  2017年   10篇
  2016年   15篇
  2015年   8篇
  2014年   10篇
  2013年   10篇
  2012年   21篇
  2011年   20篇
  2010年   8篇
  2009年   11篇
  2008年   7篇
  2007年   13篇
  2006年   11篇
  2005年   10篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  1993年   1篇
  1987年   1篇
  1980年   1篇
  1979年   1篇
  1975年   1篇
排序方式: 共有226条查询结果,搜索用时 78 毫秒
101.
    
Assessing trait–environment relationships is crucial for predicting effects of natural and human‐induced environmental change on biota. We compiled a global database of fish assemblages in estuaries, functional traits of fishes and ecosystem features of estuaries. And we quantified the relative importance of ecosystem features as drivers of patterns of fish functional traits among estuaries worldwide (i.e. drivers of the proportions of fish traits). In addition to biogeographical context, two main environmental gradients regulate traits patterns: firstly temperature, and secondly estuary size and hydrological connectivity of the estuary with the marine ecosystem. Overall, estuaries in colder regions, with larger areas and with higher hydrological connectivity with the marine ecosystem, have higher proportions of marine fish (versus freshwater), macrocarnivores and planktivores (versus omnivores, herbivores and detritivores) and larger fish, with greater maximum depth of distribution and longer lifespan. The observed trait patterns and trait–environment relationships are likely generated by multiple causal processes linked to physiological constraints due to temperature and salinity, size‐dependent biotic interactions, as well as habitat availability and connectivity. Biogeographical context and environmental conditions drive species richness and composition, and present results show that they also drive assemblage traits. The observed trait patterns and trait–environment relationships suggest that assemblage composition is determined by the functional role of species within ecosystems. Conservation strategies should be coordinated globally and ensure protection of an array of estuaries that differ in ecosystem features, even if some of those estuaries do not support high species richness.  相似文献   
102.
    
Elbow joint incongruity is recognized as an important factor in the development, treatment, and prognosis of canine elbow dysplasia. Elbow incongruity has been measured based on radiographic joint space widths, however these values can be affected by the degree of elbow joint flexion. Recent studies have reported radiographic curvature radii as more precise measures of humeroulnar congruity in dogs. The aim of this prospective observational study was to describe radiographic curvature radii measured from flexed and extended elbow radiographs for a sample of dogs representing a medium breed (Portuguese Pointing Dog) and a large breed (Estrela Mountain Dog). The curvature radii from the ulnar trochlear notch and humeral trochlea were measured in 114 mediolateral elbow extended radiographic views (30 Portuguese Pointing Dog and 27 Estrela Mountain Dog), and 84 mediolateral flexed views (22 Portuguese Pointing Dog and 20 Estrela Mountain Dog). The sampled animals' ages ranged from 12 to 84 months (34.6 ± 17.8 months). Good agreement was observed between curvature radii measurements for flexed vs. extended views in both breed groups. Ulnar trochlear notch curvature radii measurements were greater than humeral trochlea curvature radii measurements in both breed groups. Both curvature radii were greater in the large‐breed dog group vs. the medium‐breed dog group. Both breed groups had ulnar and humeral curves with similar typology. However, the large breed group had greater intermediate differences between the humeroulnar surface curvature radii. Results from this study supported the use of curvature radii as measures of humeroulnar congruity in mediolateral flexed elbow radiographs of medium and large breed dogs.  相似文献   
103.
104.

Context

When modeling a species’ distribution, landscapes can alternatively be conceptualized following patch- or gradient-based approaches. However, choosing the most suitable conceptualization is difficult and methods for empirical validation are still lacking.

Objectives

To address the conditions under which a given conceptual model is more suitable, taking into account landscape context and species trait dependency effects. Patch- and gradient-based conceptualizations were built based on two structurally different landscapes: variegated and mosaic. We hypothesize that: (H1) gradient-based models better describe variegated landscapes while patch-based models perform better in mosaic landscapes; and (H2) gradient-based models will fit generalist species better while patch-based models will suit specialists better.

Methods

We modeled the distribution of eleven bird species in each landscape using each conceptualization. We determined the suitability of each conceptual model to fit statistical models by looking for cross-species responses and deviations from best models.

Results

We found no clear support for our hypotheses. Although patch-based models performed better in mosaic landscapes (H1), they also provided useful conceptualizations in variegated landscapes. However, when patches showed high heterogeneity, gradient-based approaches better fit specialist species (H2).

Conclusions

The suitability of a given conceptual model depends on the interaction between species habitat specialization, and the intrinsic spatial heterogeneity of the landscape and the ability of each conceptualization to capture it. Gradient-based models provide better information on resource allocation, while patch-based models offer a simplified perspective on landscape attributes. Future research should consider the nature of both species and landscapes in order to avoid bias from inadequate landscape conceptualizations.
  相似文献   
105.
Gibberella zeae (anamorph Fusarium graminearum) is the main pathogen causing Fusarium head blight of wheat in Argentina. The objective of this study was to determine the vegetative compatibility groups (VCGs) and mycotoxin production (deoxynivalenol, nivalenol and 3-acetyl deoxynivalenol) by F. graminearum populations isolated from wheat in Argentina. VCGs were determined among 70 strains of F. graminearum isolated from three localities in Argentina, using nitrate non-utilizing (nit) mutants. Out of 367 nit mutants generated, 41% utilized both nitrite and hypoxanthine (nit1), 45% utilized hypoxanthine but not nitrite (nit3), 9% utilized nitrite but not hypoxanthine (NitM) and 5% utilized all the nitrogen sources (crn). The complementations were done by pairing the mutants on nitrate medium. Fifty-five different VCGs were identified and the overall VCG diversity (number of VCGs/number of isolates) averaged over the three locations was 0.78. Forty-eight strains were incompatible with all others, thus each of these strains constituted a unique VCG. Twenty-two strains were compatible with other isolates and were grouped in seven multimembers VCGs. Considering each population separately, the VCG diversity was 0.84, 0.81 and 1.0 for San Antonio de Areco, Alberti and Marcos Juarez, respectively. Toxin analysis revealed that of the 70 strains of F. graminearum tested, only 90% produced deoxynivalenol, 10% were able to produce deoxynivalenol and very low amounts of 3-acetyldeoxynivalenol. No isolate produced nivalenol. The results indicate a high degree of VCG diversity in the F. graminearum populations from wheat in Argentina. This diversity should be considered when screening wheat germplasm for Fusarium head blight resistance.  相似文献   
106.
Cork oak (Quercus suber L.) is an autochthonous tree species that is being used for reforestation in heavy-metal-contaminated areas in Spain. A hydroponics experiment was carried out to characterize the effects of Cd on several morphological and physiological parameters in this species, including shoot length, nutrient concentrations and allocation in different organs, leaf pigment concentrations, photosynthetic efficiency, root ferric chelate reductase (FCR) activity and organic acid concentrations in xylem sap. Four different Cd treatments were applied, adding Cd chelated with EDTA or as chloride salt at two different concentrations (10 and 50 μM Cd). After 1 month of Cd treatment, plant growth was significantly inhibited in all treatments. Results indicate that Cd accumulates in all organs 7- to 500-fold when compared with control plants. The highest Cd concentration was found in the 50 μM CdCl(2) treatment, which led to concentrations of ~30, 123 and 1153 μg Cd g(-1) dry weight in leaves, stems and roots, respectively. In the strongest Cd treatments the concentrations of P and Ca decreased in some plant parts, whereas the Mn leaf concentrations decreased with three of the four Cd treatments applied. The concentrations of chlorophyll and carotenoids on an area basis decreased, whereas the (zeaxanthin plus antheraxanthin)/(total violaxanthin cycle carotenoids) ratio and the non-photochemical quenching increased significantly in all Cd treatments. Cadmium treatments caused significant increases in the activity of the enzyme FCR in roots and in the concentrations of organic acids in xylem sap. Some of the physiological changes found support the fact that Cd induces a deficiency of Fe in cork oak, although the plant Fe concentrations were not reduced significantly. At higher concentrations the effects of Cd were more pronounced, and were more marked when Cd was in the free ion form than when present in the form of Cd-EDTA.  相似文献   
107.
108.
Classification and characterization of the shape of plant organs are important tools for plant biologists, breeders and growers. Here we use boundary measurements, i.e. contour morphometric data, of scanned tomato fruits in conjunction with elliptic Fourier shape modeling and Bayesian classification techniques to find the optimum number of shape categories. Our findings show that there are nine computationally and visually distinct tomato shape categories: ellipsoid, flat, heart, long, long rectangular, rectangular, round, obovoid, and oxheart. Analyses of fruits from a diverse set of tomato accessions demonstrate that some varieties carry fruits that conform to predominantly one shape category while others carry fruits that conform to multiple shape categories. In particular the categories oxheart and long rectangular feature fruit that tend to equivalently fit several categories of shape, while the flat and obovoid categories contain fruit that consistently conform exclusively to a single category. The findings show that elliptic Fourier shape modeling and Bayesian classification provide an excellent tool for further in depth analyses of fruit shape variation that may occur across varieties and/or result from growth under different environmental conditions.  相似文献   
109.
The effects of salinity [30 or 90 mM sodium chloride (NaCl)] and calcium (Ca) foliar application on plant growth were investigated in hydroponically-grown parsley (Petroselinum crispum Mill). Increasing salinity reduced fresh weight and leaf number. Calcium alleviated the negative impacts of 30 mM NaCl on plant biomass and leaf fresh weight but not in case of 90 mM. Plant height, leaf and root dry weight and root length did not differ among treatments. Total phenols increased with calcium application, chlorophyll b reduced by salinity, while total carotenoids increased with salinity and/or Ca application. Salinity reduced nutrient uptake [nitrate (NO3), potassium (K), phosphorus (P) and Ca] and elemental content in leaves and roots. Calcium application reduced P but increased Ca content in plant tissues. Increments of Na uptake in nutrient solution resulted in higher Na content in leaves and roots regardless Ca application. These findings suggest that calcium treatment may alleviate the negative impacts of salinity.  相似文献   
110.
Marine organisms produce secondary metabolites that may be valuable for the development of novel drug leads as such and can also provide structural scaffolds for the design and synthesis of novel bioactive compounds. The marine alkaloids, clathrodin and oroidin, which were originally isolated from sponges of the genus, Agelas, were prepared and evaluated for their antimicrobial activity against three bacterial strains (Enterococcus faecalis, Staphylococcus aureus and Escherichia coli) and one fungal strain (Candida albicans), and oroidin was found to possess promising Gram-positive antibacterial activity. Using oroidin as a scaffold, 34 new analogues were designed, prepared and screened for their antimicrobial properties. Of these compounds, 12 exhibited >80% inhibition of the growth of at least one microorganism at a concentration of 50 µM. The most active derivative was found to be 4-phenyl-2-aminoimidazole 6h, which exhibited MIC90 (minimum inhibitory concentration) values of 12.5 µM against the Gram-positive bacteria and 50 µM against E. coli. The selectivity index between S. aureus and mammalian cells, which is important to consider in the evaluation of a compound’s potential as an antimicrobial lead, was found to be 2.9 for compound 6h.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号