首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2537篇
  免费   139篇
林业   213篇
农学   294篇
基础科学   31篇
  587篇
综合类   117篇
农作物   197篇
水产渔业   306篇
畜牧兽医   657篇
园艺   69篇
植物保护   205篇
  2023年   36篇
  2022年   74篇
  2021年   82篇
  2020年   102篇
  2019年   122篇
  2018年   153篇
  2017年   150篇
  2016年   122篇
  2015年   84篇
  2014年   118篇
  2013年   227篇
  2012年   180篇
  2011年   154篇
  2010年   133篇
  2009年   95篇
  2008年   108篇
  2007年   99篇
  2006年   86篇
  2005年   59篇
  2004年   50篇
  2003年   44篇
  2002年   34篇
  2001年   41篇
  2000年   35篇
  1999年   26篇
  1998年   18篇
  1997年   15篇
  1996年   11篇
  1995年   7篇
  1994年   8篇
  1993年   7篇
  1992年   11篇
  1991年   14篇
  1990年   13篇
  1989年   11篇
  1988年   11篇
  1987年   13篇
  1986年   8篇
  1985年   6篇
  1984年   7篇
  1983年   8篇
  1982年   5篇
  1981年   9篇
  1980年   5篇
  1979年   15篇
  1974年   8篇
  1973年   8篇
  1971年   7篇
  1969年   6篇
  1967年   4篇
排序方式: 共有2676条查询结果,搜索用时 171 毫秒
31.
Ashwagandha (Withania somnifera) is an important medicinal plant and its dried roots are used in traditional systems of medicine. The market price of roots is determined by physical (textural) quality. Brittle roots with high starch and low fiber are considered to be superior because of ease in grinding. Genetic diversity studies based on root textural parameters have not been done so far. So the present study was designed to assess genetic diversity for morphometric traits and root textural quality parameters among two morphologically distinct groups: Poshita and Nagore. The PCA separated the morphometric and root texture variables distinctly into two different principal components: PC-1 and PC-2 respectively, indicating that both are negatively associated. All the morphotypes in Poshita group showed high positive loadings in PC-1 indicating that component genotypes are high root yielding. Nagore morphotypes were low yielding but the root texture was good. Clustering of morphotypes grouped Poshita and Nagore separately with high inter-cluster distances indicating that both groups are highly divergent from each other, suggesting that there is sufficient scope for varietal improvement through hybridization.  相似文献   
32.
Nitrous oxide (N2O) emission from flooded rice paddy fields was continuously measured by the closed chamber method at an experimental plot in Thailand for a whole cultivation period. To characterize the N2O emission with regard to the denitrification N loss, the C2H2 inhibition method was applied. Flood water on the soil greatly suppressed the N2O emission. The N2O emission was mitigated considerably by even a thin film of the flood water. The overall average N2O emissions under flood conditions for one crop season (83 days) at the control site and the C2H2 treated site were 10.3 and 11.8 μg N m−2 h−1, respectively. The N2O emission from the C2H2 treated site was consistently higher than that from the control site and the N2O emission from both sites followed the same diurnal and seasonal variation pattern, indicating the effect of denitrification inhibition by the supplied C2H2. The N2O emission enhanced along with temperature increase when NO3–N concentration in the soil water was above 0.4 mg N l−1 and soil temperature was above 24°C, suggesting specific temperature influence over the emission. The increase in NO3–N concentration and temperature in the soil affected only the N2O emission while the difference in the emission at the C2H2 treated site and the control site was not so much affected. It was suggested that most of the actively produced N2O under higher NO3–N concentration and temperature would likely to quickly emit to the atmosphere rather than to undergo further reduction to N2.  相似文献   
33.
A field experiment was conducted to study the effect of planting material and plant density on stevia (Stevia rebaudiana Bertoni) under western Himalayan conditions during 2011 and 2012. The experiment conducted in a split plot design consisted of two types of planting material (rooted slips and fresh seedlings) in the main plot and five inter- and intra-row spacing in subplots with three replications. Yield attributes and dry leaf biomass yield of stevia were not affected by the type of planting material; however, plant density significantly influenced the yield attributes and leaf and stem dry biomass. Although the wider spacing (60 × 45 cm) gave more leaves, higher leaf area index, higher leaf dry mass per plant as compared to closer spacing, it resulted in lower values of these attributes per unit area. Plants spaced in 30 × 30 cm accumulated 41.2% and 42.8% more total biomass than 60 × 45 cm. Steviol glycoside content did not change due to different planting materials and plant densities; however, closer plant spacing (30 × 30 cm) recorded 114.8% and 70.0% higher steviol glycoside accumulation compared to wider row spacing (60 × 45 cm) in 2011 and 2012, respectively.  相似文献   
34.
The aim of this research was designed in order to optimize integrated plant nutrient supply (IPNS) through balanced fertilization of organic, inorganic and microbial inoculants in strawberry cv. Chandler. The potential efficiency of bio-organics used along with chemical fertilizers on cropping behaviour, physical-chemical and biological properties of rhizosphere soil, fruit yield, quality attributes and leaf nutrient content was investigated. The significant improvement in physico-chemical properties of the soil and nutrient uptake was recorded. The uninoculated control received farmyard manure (FYM) and inorganic nitrogen (N) recorded the highest cation exchange capacity (CEC) and soil organic carbon (OC) content. Highest available N and phosphorus (P) of soil were recorded in vermicompost and inorganic N applied in two and one split, respectively. The concentration of micronutrients cations viz., iron (Fe), zinc (Zn), manganese (Mn) in soil was higher in treatment received vermicompost and inorganic N in two splits. The integration of bio-organic nutrient supplements also significantly enriched the microbial status of the rhizosphere soil, leaf nutrient concentration and maintained soil health and productivity on long term basis for sustainable fruit production.  相似文献   
35.
Transplanting of rice seedling in puddled soil is one of the most widely used cultivation practices. The present research is aimed at determining what specific implements are needed to obtain optimal puddle bed for transplantating. Puddling experiments were carried out by the use of pair of bullocks with traditional country plough (T1), pair of bullocks with lug wheel puddler (T2), power tiller with rotary puddler (T3), tractor with cage wheel and 9-tine cultivator (T4) and tractor with cage wheel and rotavator (T5). One summer ploughing was done at friable moisture condition (18.6% db) and then tilled soil was flooded to saturation (24 h) for preparation of puddled bed. Weeding efficiency, puddling depth, percentage increase in bulk density, puddling index, percolation rate and grain yield of paddy were studied for the above treatments. Puddling performance by different implements in comparison to the traditional animal drawn country plough (T1) shows that there is a definite reduction in time requirement for field preparation. Increase in weeding efficiency, bulk density, grain yield and puddling index were also observed. The highest values of weeding efficiency and puddling index were found 98.6% and 79.3, respectively, for rotavator (T5). The total time requirement for preparation of puddle field for treatment T4 (tractor with cultivator) was found to be the lowest (9.4 h ha−1) with 67% weeding efficiency and 62.7 puddling index as compared to all other alternatives tested. Energy requirement for preparation of puddle field was found highest (2390 MJ ha−1) for rotavator (T5) followed by T3, T4, T1, and T2 treatments.  相似文献   
36.
The present investigation was carried out on fifteen germplasm lines of Pisum sativum L. were used for characterization using Randomly Amplified Polymorphic DNA (RAPD) markers. While 12 random primers were taken, out of them 11 primers gave amplification. These primers gave a total of 133 bands out of which 106 were polymorphic. Genetic similarities of the RAPD profiles were estimated by using Jaccard’s coefficient with NTSYSpc 2.0 software. The similarity index values ranged from 0.263 to 0.793 indicating the presence of enormous genetic diversity at molecular level. A dendrogram generated by cluster analysis divided fifteen fieldpea genotypes into two Groups A and B. Major Group A have five genotypes and major Group B have nine genotypes.  相似文献   
37.
The seasonal and annual variability of sensible heat flux (H), latent heat flux (LE), evapotranspiration (ET), crop coefficient (Kc) and crop water productivity (WPET) were investigated under two different rice environments, flooded and aerobic soil conditions, using the eddy covariance (EC) technique during 2008-2009 cropping periods. Since we had only one EC system for monitoring two rice environments, we had to move the system from one location to the other every week. In total, we had to gap-fill an average of 50-60% of the missing weekly data as well as those values rejected by the quality control tests in each rice field in all four cropping seasons. Although the EC method provides a direct measurement of LE, which is the energy used for ET, we needed to correct the values of H and LE to close the energy balance using the Bowen ratio closure method before we used LE to estimate ET. On average, the energy balance closure before correction was 0.72 ± 0.06 and it increased to 0.99 ± 0.01 after correction. The G in both flooded and aerobic fields was very low. Likewise, the energy involved in miscellaneous processes such as photosynthesis, respiration and heat storage in the rice canopy was not taken into consideration.Average for four cropping seasons, flooded rice fields had 19% more LE than aerobic fields whereas aerobic rice fields had 45% more H than flooded fields. This resulted in a lower Bowen ratio in flooded fields (0.14 ± 0.03) than in aerobic fields (0.24 ± 0.01). For our study sites, evapotranspiration was primarily controlled by net radiation. The aerobic rice fields had lower growing season ET rates (3.81 ± 0.21 mm d−1) than the flooded rice fields (4.29 ± 0.23 mm d−1), most probably due to the absence of ponded water and lower leaf area index of aerobic rice. Likewise, the crop coefficient, Kc, of aerobic rice was significantly lower than that of flooded rice. For aerobic rice, Kc values were 0.95 ± 0.01 for the vegetative stage, 1.00 ± 0.01 for the reproductive stage, 0.97 ± 0.04 for the ripening stage and 0.88 ± 0.03 for the fallow period, whereas, for flooded rice, Kc values were 1.04 ± 0.04 for the vegetative stage, 1.11 ± 0.05 for the reproductive stage, 1.04 ± 0.05 for the ripening stage and 0.93 ± 0.06 for the fallow period. The average annual ET was 1301 mm for aerobic rice and 1440 mm for flooded rice. This corresponds to about 11% lower total evapotranspiration in aerobic fields than in flooded fields. However, the crop water productivity (WPET) of aerobic rice (0.42 ± 0.03 g grain kg−1 water) was significantly lower than that of flooded rice (1.26 ± 0.26 g grain kg−1 water) because the grain yields of aerobic rice were very low since they were subjected to water stress.The results of this investigation showed significant differences in energy balance and evapotranspiration between flooded and aerobic rice ecosystems. Aerobic rice is one of the promising water-saving technologies being developed to lower the water requirements of the rice crop to address the issues of water scarcity. This information should be taken into consideration in evaluating alternative water-saving technologies for environmentally sustainable rice production systems.  相似文献   
38.
In a greenhouse study, methane emissions were measured from two diverse Indian rice-growing soils planted to five rice cultivars under similar water regimes, fertilizer applications and environmental conditions. Significant variations were observed in methane emitted from soils growing different cultivars. Total methane emission varied between 8.04 and 20.92gm–2 from IARI soil (Inceptisol) and between 1.47 and 10.91gm–2 from Raipur soil (Vertisol) planted to rice. In all the cultivars, emissions from IARI soil were higher than from Raipur soil. The first methane flux peak was noticed during the reproductive phase and the second peak coincided with the grain-ripening stage of the rice cultivars. Received: July 7, 1996  相似文献   
39.
Earthworms recorded during 1989–1993 across 15 soil management treatments, comprising three different tillagexthree organic amendments (bare, farmyard manure, and rice straw) and six perennial ley treatments, belonged to two endogeic species, Octochaetona phillotti (Michaelsen) and Lampito mauritii Kinberg, while in a nearby undisturbed natural revegetation area three species were found, including the above two and Octonochaeta rosea (Stephenson). The earthworm biomass showed significant temporal and spatial variations and was higher during the post monsoon period than in the early rainy season. No worm biomass was recorded during the dry season. In the tillage and organic amendment treatments, the biomass was drastically reduced from September 1989 to September 1991 after the application of carbofuran and some herbicides, and was significantly reduced during these two years compared to that of 1992. The maximum monthly earthworm biomass ranged between 2.5 and 17.9 g m-2 across the treatments and increased several-fold in the nearby natural revegetation area (75.9 g m-2). It significantly increased in perennial ley treatments compared to annual treatments with organic amendments. Thus the earthworm biomass varied significantly (P<0.01) across the 15 treatments, indicating discernible effects of soil management.Visiting Scientist (under the Rockefeller Foundation Environmental Research Fellowship in International Agriculture)  相似文献   
40.
Summary There were significant differences among pigeonpea [Cajanus cajan (L.) Millsp] Rhizobium sp. strains (IC 3506, IC 3484, IC 3195, and IC 3087) in their ability to nodulate and fix N2 under saline conditions. Pigeonpea plants inoculated with IC 3087 and IC 3506 were less affected in growth by salinity levels of 6 and 8 dS m-1 than plants inoculated with the other strains. For IC 3506, IC 3484, and IC 3195, there was a decrease in the number of nodules with increasing salinity, while the average nodule dry weight and the specific nitrogenase activity remained unaffected. However, in IC 3087, the number of nodules increased slightly with increasing salinity. Leaf-P concentrations increased with salinity in the inoculated plants irrespective of the Rhizobium sp. strain, and leaf-N concentrations decreased with increasing salinity in IC 3484 and IC 3195 only. Shoot-Na and-Cl levels were further increased in these salt-sensitive strains only at 8 dS m-1. Therefore there may be scope for selecting pigeonpea Rhizobium sp. symbioses better adapted to saline conditions. The Rhizobium sp. strains best able to form effective symbioses at high salinity levels are not necessarily derived from saline soils.Submitted as JA No. 919 by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号