首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9792篇
  免费   3644篇
林业   182篇
农学   446篇
基础科学   2篇
  1324篇
综合类   57篇
农作物   103篇
水产渔业   2498篇
畜牧兽医   7537篇
园艺   9篇
植物保护   1278篇
  2024年   5篇
  2023年   51篇
  2022年   8篇
  2021年   142篇
  2020年   598篇
  2019年   1031篇
  2018年   967篇
  2017年   1017篇
  2016年   972篇
  2015年   903篇
  2014年   932篇
  2013年   1114篇
  2012年   594篇
  2011年   596篇
  2010年   716篇
  2009年   455篇
  2008年   343篇
  2007年   148篇
  2006年   183篇
  2005年   150篇
  2004年   198篇
  2003年   169篇
  2002年   231篇
  2001年   182篇
  2000年   174篇
  1999年   94篇
  1998年   104篇
  1997年   94篇
  1996年   87篇
  1995年   96篇
  1994年   70篇
  1993年   112篇
  1992年   118篇
  1991年   116篇
  1990年   116篇
  1989年   74篇
  1988年   89篇
  1987年   80篇
  1986年   73篇
  1985年   55篇
  1984年   47篇
  1983年   47篇
  1982年   25篇
  1981年   5篇
  1978年   8篇
  1977年   7篇
  1975年   5篇
  1974年   4篇
  1970年   4篇
  1969年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
102.
Urinary Incontinence after Prostatectomy in Dogs   总被引:1,自引:0,他引:1  
Eleven dogs with prostatic disease were treated by total prostatectomy. Urinary incontinence persisted in three of nine dogs, two of which were also incontinent before surgery. The incidence of postoperative incontinence may be reduced by undermining the prostatic capsule to preserve as much prostatic urethra as possible. The risk of postoperative incontinence appeared greater if there was prostatic neoplasia or preoperative urinary incontinence.  相似文献   
103.
104.
An adult great‐horned owl (Bubo virginianus; GHOW) presented with a history of recurrent corneal ulceration of the right eye (OD). Findings included ulcerative superficial keratitis, proliferative conjunctivitis, and iris pigmentary changes. The ulcer was initially nonresponsive to medical therapy, but showed rapid and appropriate healing following diamond burr debridement. Proliferative conjunctivitis markedly improved following topical antiviral therapy with cidofovir 1%, interferon alpha 2B ophthalmic solutions, and oral l ‐lysine. Histopathologic evaluation of a conjunctival biopsy revealed epithelial features suspicious for viral cytopathic changes and intranuclear structures suspicious for viral inclusions, suggestive of a possible viral‐induced papillomatous conjunctivitis. A novel alphaherpesvirus, referred to as Strigid Herpesvirus 1 (StrHV1), was identified using PCR and gene sequencing. This case represents a new clinical manifestation of a previously unreported herpesvirus in the GHOW. Identification of the herpes virus was critical to administration of appropriate therapy and resolution of the conjunctivitis, and corneal epithelial debridement promoted resolution of the chronic corneal epithelial defect.  相似文献   
105.
106.
The effect of a standard, single dose therapy with tulathromycin was investigated on the postvaccinal humoral and cellular immune response in pigs vaccinated against swine influenza. Forty‐five pigs, divided into 3 groups, were used (control not vaccinated (C, n = 15), control vaccinated (CV, n = 15), and experimentally received tulathromycin (TUL, n = 15)). For vaccination of pigs, an inactivated, commercial vaccine was used. Pigs from TUL group received single dose of tulathromycin intramuscularly, at the recommended dose (2.5 mg/kg body weight). Pigs from TUL and CV groups were vaccinated at 8 and 10 weeks of age. The specific humoral and cellular immune response against swine influenza virus (SIV) was evaluated. The results of present study showed that humoral postvaccinal response after vaccination against SIV can be modulated by treatment with tulathromycin. In pigs from TUL group, the significantly higher titers of anti‐SIV‐specific antibodies were observed 4 and 6 weeks after booster dose of vaccine. Simultaneously, T‐cell‐mediated immune response against SIV was not affected by tulathromycin. Our recent study confirmed the importance of defining the modulatory activity of tulathromycin because of its influence on the immune response to vaccines. Since the antibodies against hemagglutinin are crucial for the protection against SIV, the present observations should prompt further studies on the practical significance of recent results in terms of clinical implications (postvaccinal protection) in the field conditions.  相似文献   
107.
To determine if bedding has any influence on the time horses spend recumbent, 8 horses kept on straw and 8 kept on wood shavings were observed from 10:00 to 5:30 for two successive nights. Observations were conducted using time-lapse video recordings. Lying down and rising behavior, as well as frequency and duration of bouts spent in lateral and sternal recumbency, was registered. The results showed that horses on straw were lying in lateral recumbency three times longer than horses on shavings (P < .001), whereas the time horses spent in sternal recumbency did not differ. The longest period of noninterrupted lateral recumbency was longer for horses on straw than for those on shavings. Because horses must lie down, preferably in lateral recumbency, to achieve paradoxical sleep, the reduced time spent in lateral recumbency in horses on wood shavings may affect their welfare and performance. Independent of the bedding, we further observed that, as the horses got up from recumbency, most of them made attempts to roll over before rising. This behavior appeared to be caused by some difficulty in rising, possibly due to the box size, and might have a connection with the fact that horses sometimes get stuck against the box wall.

Introduction

Many riding horses spend the majority of their life in an artificial environment. Horse owners keep their horses under certain conditions because of tradition, because they want to make the horse feel comfortable from a human point of view, or to reduce the amount of work involved in horse husbandry. Often the choice of bedding substrate is made from a subjective point of view without assessing both short-term and long-term effects of the bedding. Part of the reason is that only few studies have analyzed horses' preferences for different bedding substrates and their effect on the time horses spend recumbent. In one study comparing straw and wood shavings, no significant preference was found.[1] In another study comparing plastic, wheat straw, and wood shavings, the time horses spent standing, sleeping, or lying down was not affected significantly by the bedding substrates. [2] Mills et al [3] found that horses, given a choice between straw and wood shavings, spent significantly more time on straw. Whereas the substrates had no significant effect on behaviors such as eating, lying, and standing alert, horses spent more time performing bedding-directed behaviors on straw but more time dozing on shavings. Finally, it has been reported that the use of nonstraw bedding may increase the risk of abnormal behaviors such as weaving. [4]As far as bedding properties are concerned, Airaksinen et al[5] concluded that air quality in the stable and utilization of manure can be improved by selecting a good bedding material. According to Reed and Redhead, [6] both straw and shavings are economical and easy to obtain, and they make a bright, comfortable bed. Straw bales are convenient to store, but may be eaten by the horse, are labor intensive, and may be dusty or contain fungal spores. Wood shavings are not eaten by the horse and are good for respiratory problems but need to be kept very clean because they are porous. In addition, they are not as warm as straw because they do not trap air the way straw does.Electroencephalographic (EEG) studies in cats have demonstrated that sleep can be divided into two stages of differing electrocorticographic (EcoG) patterns, ie, slow-wave-sleep (SWS) and paradoxical sleep (PS).[7] During PS, bursts of rapid eye movements (REM) can be seen at irregular intervals. [8] In humans, dreaming occurs during this stage. [9 and 10] Horses are able to sleep while standing, [11] but in this position they only go into SWS. [14, 15 and 16] During PS there is a complete abolition of muscular tone of antigravity muscles and of neck muscles, as shown in cats. [17] In horses, there is a gradual loss of muscular tone until the middle of the recorded SWS period, whence it decreases to a negligible amount during PS. [15] Consequently, muscular tone disappears entirely at the onset of PS. [18] Horses are unable to complete a sleeping cycle without lying down to enter PS. [8, 19 and 20] They normally fall asleep while standing and, when they feel confident about their environment, lie down in sternocostal recumbency. [8] Thereafter, they proceed to lateral recumbency and enter PS. [14 and 19] Dallaire and Ruckebusch [18] demonstrated that the SWS state was infrequent in the standing animal and most often occurred during sternocostal recumbency with the head resting or not on the ground. PS occurred in both sternocostal and lateral recumbency, although the animal frequently had to readjust its position into sternocostal recumbency due to the disappearance of neck muscular tone.The sleep pattern of horses depends on many circumstances, such as age,[21, 22 and 23] diet, [16] and familiarity with the environment. When horses are put outdoors it may take some days before they lie down. If one horse that is familiar with the environment lies down, the others usually follow. [8 and 13] Dallaire and Ruckebusch [16] subjected three horses to a four-day period of perceptual (visual and auditive) deprivation. After this period total sleep time increased due to an augmentation of both SWS and PS. Finally, there is large individual variation between horses in the time they spend recumbent and sleeping. [15]Horses spend 11% to 20% of the total time in recumbency.[11 and 15] Lateral recumbency represents about 20% of total recumbency time, and uninterrupted periods of lateral recumbency vary from 1 to 13 minutes (mean, 4.6 min). [14 and 16] Steinhart [11] found that the mean length of uninterrupted lateral recumbency periods was 23 minutes, the longest period being one hour. Total sleeping time in the stabled horse averages 3 to 5 hours per day or 15% of the total time. [8, 13 and 16] Keiper and Keenan [24] found similar time budgets in feral horses that were recumbent approximately 26% of the night. PS is about 17% to 25% of total sleeping time, and the mean length of a single PS period is 4 to 4.8 minutes. [13 and 18]In stabled horses sleep is mainly nocturnal and occurs during three to seven periods during the night.[8, 13 and 16] Ruckebusch [13] observed that neither sleep nor recumbency occurred during daytime in three ponies observed for a month and, in another experiment conducted on horses, PS occurred only during nighttime. [15] A group of ponies observed for more than a month between 8:45 and 4:45 spent only 1% of the daytime recumbent.[25] The maximum concentration of sleep occurs from 12:00 to 4:00 .[8, 16, 18 and 24]The purpose of this study was to examine two groups of horses in a familiar environment, one group kept on a bedding consisting of straw, and the other kept on wood shavings, and to determine if there was any difference between the two groups in the time they spend recumbent.

Materials and methods

Housing. The study was conducted in one of the biggest riding clubs in Denmark, housing about 150 horses. The 18 horses used in the study stood in three different parts of the stable. They were all stabled in boxes measuring 3 × 3 m and subjected to the same feeding and management routine. They were unable to see their next-door neighbor because of a tall wooden board, but they were able to see the horses stabled on the opposite side of the corridor through bars. Nine horses were stabled on wheat straw (15 cm long, dry matter content 87-88%) and nine on oven-dried wood shavings (80% spruce and 20% pine, dry matter content 82%).Animals. All horses used in the study were privately owned. They had been kept in the boxes in which they were observed a minimum of three weeks. Three of the horses were mares and 15 were geldings. Most of them were Danish Warmblood used for dressage riding. Their ages ranged from 5 to 18 years (mean, 10.6 y) and their height ranged from 1.60 to 1.76 m (mean, 1.68 m). All horses wore a blanket. Age and sex distribution between the two groups is shown in Table 1.  相似文献   
108.
The pattern of the specific 5-HT2A (5-hydroxytryptamine 2A receptor) antagonist 123I-5-I-R91150 was measured in 10 healthy dogs without neurologic and behavior abnormalities. Eight cortical regions (left and right fronto-, temporo-, parieto-, and occipitocortical area), one global subcortical region (including the thalamic system) were compared with a reference region lacking receptors; that is, the cerebellum. The 123I labeled radioligand was injected intravenously 100-200 minutes before acquisition. Both transmission and emission data were obtained with a triple head gamma camera equipped with high-resolution fanbeam collimators. The emission data were corrected for scatter and attenuation. To delineate different cerebral regions more accurately, the regions of interest (ROI) defined in a former study on brain perfusion measured with 99mTc-ethyl cysteinate dimer (ECD) in the same dogs were used. The co-registration of the 99mTc-ECD and the 123I-5-I-R91150, obtained from each dog, was realized with the help of corresponding transmission maps. By normalizing each regional cerebral activity to the activity observed in the cerebellum, the regional radioactivity (binding index) could be relatively quantified. Highest brain uptake was noted in the frontocortical brain areas (right: 1.85, left: 1.89), followed by the temporocortical region (right: 1.58, left: 1.56). Least uptake was noted in the more caudal and middle brain regions [occipito- (right: 1.46, left: 1.41), parietocortical (right: 1.30, left: 1.26), and striatal region (1.19)]. No gender nor age influence was noted in this series. The 123I labeled serotonin-2A receptor ligand seems to have similar cortical binding in the normal canine brain, as shown in humans and other animal species. A frontocortical to occipitocortical (rostrocaudal) binding index gradient was identified within the dog, which has not been seen in imaging studies from humans and other animal species. The significance of these results will need further investigation. This normative data can be used to compare regional brain uptake of the 123I-radioligand to dogs with behavioral disorders related to the serotonergic system, in future studies.  相似文献   
109.
The arrhythmogenic effects of anesthetic drugs are assessed using the arrhythmogenic dose of epinephrine (ADE) model. The purpose of this study was to determine the influence of cholinergic blockade (CB) produced by glycopyrrolate (G) on ADE in 1.5 minimum alveolar concentration (MAC) halothane (H)- and isoflurane (I)-anesthetized dogs. Eight dogs (weighing between 12.5 and 21.5 kg) were randomly assigned to four treatment groups (H, HG, I, and IG) and each treatment was replicated three times. Anesthesia was induced and maintained with H (1.31%, end-tidal [ET]) or I (1.95%, ET) in oxygen. Ventilation was controlled (carbon dioxide [PCO2] 35 to 40 mmHg, ET). G was administered 10 minutes before ADE determination at a dose of 22 μg/kg (11 μg/kg, intravenous [IV] and 11 μg/kg, intramuscular [IM]). The ADE was determined by IV infusion of epinephrine at sequentially increasing rates of 1.0, 2.5, and 5.0 μg/kg/min; and defined as the total dose of epinephrine producing at least four ectopic ventricular contractions (EVCs) within 15 seconds during a 3-minute infusion and up to 1 minute after the end of the infusion. Total dose was calculated as the product of infusion rate and time to arrhythmia. Data were analyzed using a randomized complete block analysis of variance. When significant (P < .05) F values were found a least significant difference test was used to compare group means. Values are reported as means ± standard error. The ADE (μg/kg) for H, HG, I, and IG were 1.53 ± 0.08, 3.37 ± 0.46, 1.61 ± 0.21, and > 15.00, respectively. Heart rates (HRs) (beats/min) and systolic pressures (mmHg) at the time of arrhythmia formation for H, HG, I, and IG were (60.3 ±4.0 and 142.0 ± 7.6), (213.0 ± 13.1 and 239.2 ± 7.1), (62.9 ± 4.5 and 151.9 ± 6.3), and (226.3 ± 6.1 and 323.5 ± 3.4), respectively. The H and I ADE were not different. The HG ADE was significantly less than the IG ADE. The H and I ADE were significantly less than the HG and IG ADE. We conclude the following from the results of this study of epinephrine infusion in halothane- and isoflurane-anesthetized dogs: (1) two distinct mechanisms are responsible for the development of arrhythmias, (2) CB produced by G significantly increases ADE but is associated with higher rate pressure products (RPP) and myocardial work, and (3) ADE methodology could be improved by determining ADE with and without CB.  相似文献   
110.
Complete atrioventricular (AV) block was produced in 32 chloralose-anesthetized autonomically intact dogs to determine the effects of halothane, enflurane, and isoflurane on supraventricular and ventricular rate. Halothane (n = 17), enflurane (n = 6), and isoflurane (n = 9) were administered in three separate experiments in sequential minimum alveolar concentration (MAC) multiples of 0.5, 1.0, 1.5, 2.0, 1.5, and 1.0. Supraventricular rate, ventricular rate, and mean arterial blood pressure (MAP) were measured and recorded at baseline and after a 20-minute equilibration period of each inhalation anesthetic at each MAC multiple. Increasing concentrations of enflurane and isoflurane significantly decreased supraventricular rate ( P < .05). Ventricular rate was not significantly changed by sequential MAC multiples of halothane, enflurane, and isoflurane. Increasing concentrations of halothane, enflurane, and isoflurane significantly decreased MAP with enflurane producing the most significant decrease ( P < .05). Ventricular arrhythmias occurred in 5 of 17 dogs anesthetized with halothane and 1 of 9 dogs anesthetized with isoflurane. Inhalation anesthesia can significantly decrease supraventricular rate and MAP, does not alter ventricular rate, and can produce ventricular arrhythmias in dogs with complete AV block.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号