首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   426篇
  免费   13篇
  国内免费   1篇
林业   79篇
农学   16篇
基础科学   1篇
  45篇
综合类   23篇
农作物   3篇
水产渔业   46篇
畜牧兽医   197篇
园艺   5篇
植物保护   25篇
  2022年   3篇
  2021年   9篇
  2020年   6篇
  2019年   8篇
  2018年   7篇
  2017年   8篇
  2016年   10篇
  2015年   10篇
  2014年   18篇
  2013年   31篇
  2012年   29篇
  2011年   20篇
  2010年   12篇
  2009年   17篇
  2008年   24篇
  2007年   30篇
  2006年   27篇
  2005年   25篇
  2004年   21篇
  2003年   19篇
  2002年   16篇
  2001年   15篇
  2000年   9篇
  1999年   2篇
  1997年   2篇
  1996年   3篇
  1993年   2篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1984年   1篇
  1982年   4篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   6篇
  1976年   1篇
  1975年   3篇
  1974年   3篇
  1973年   3篇
  1972年   2篇
  1971年   3篇
  1970年   3篇
  1969年   3篇
  1968年   3篇
  1965年   2篇
  1963年   1篇
  1958年   1篇
排序方式: 共有440条查询结果,搜索用时 15 毫秒
31.
32.
We determine the relationships of culm surface area to other culm dimensions for one of the largest bamboo species, Phyllostachys pubescens Mazel ex Houzeau de Lehaie. A total number of 150 sample culms were collected from a stand of P. pubescens in Mt. Toshima, Kumamoto Prefecture, western Japan. The culm surface area for each sample was calculated, and then the relationships of the culm surface area to basal area and product of diameter at breast height (dbh) and culm height were analyzed. The relationship between culm surface area and basal area could be described successfully by the power equation, whereas there was a linear relationship of culm surface area to product of dbh and height. Although the regression equations determined here would be useful in estimating culm surface area of P. pubescens, it is necessary to select an appropriate equation depending on the purpose and available time and labor.  相似文献   
33.
The study was carried out in a 9-year-old hinoki cypress (Chamaecyparis obtusa (Sieb. et Zucc.) Endl.), stand over a span of three years from July 1992 to June 1995, primarily to predict litter production from exteral tree dimensions by combining open-top clothtrap and clipping methods. Litter production was virtually concentrated in October and November. Stem cross-sectional area at the crown base was proved to be the reliable predictor of litter production, and that single regression model was evolved irrespective of year. The regression model had proportional constants of 2.696 × 10−2 and 3.540 × 10−2 kg cm−2 year−1 for leaf litter and total litter production, respectively. Utilizing the model, leaf litter production of the stand was assessed to be 5.04, 5.12, and 4.99, and total litter production to be 6.48, 6.58, and 6.40 Mg ha−1 year−1 for the first, second and third year, respectively. Biomass increment was 6.67, 7.80, and 7.70, tree mortality was 0.15, 0.13, and 0.41, and insect grazing was 0.09, 0.05, and 0.002 Mg ha−1 year−1 for the first, second and third year, respectively. Above-groud net production was therefore 13.39, 14.55, and 14.51, Mg ha−1 year−1, and biomass accumulation ratio (biomass/net production) was 1.86, 2.21, and 2.76 year for the first, second and third year, respectively. Considering data from earlier studies and the results of this study, biomass accumulation ratio,BAR (year), of hinoki stands was best related to above-ground biomass,y (Mg ha−1), using the power function:BAR=0.112y 0.936. Excluding seedling stands, leaf efficiency (above-ground net production per unit leaf mass) of hinoki stands was 0.91±0.02 (SE) Mg Mg−1 year−1, irrespective of stand biomass or age.  相似文献   
34.
To estimate the wind force that causes windthrow damage to a tree, the drag coefficients of actual-sized trees were evaluated by a field test method. In this method, wind velocity and stem deflection were monitored simultaneously. The wind force acting on a tree crown was calculated from stem deflection; stem stiffness was evaluated by conducting tree-bending tests. The results of tests conducted on three poplar trees showed that drag coefficient decreased with an increase in wind velocity. Although the variation in the drag coefficient was large at low wind velocity because of the vibrating behavior of the stem subjected to variable wind force, the variation at wind velocities above 10 m/s was small. The average drag coefficient at a wind velocity of 30 m/s was estimated by the curve-fitting of a power function to the wind velocity-drag coefficient relationship to be 0.102, which was smaller than that of actual-sized conifers studied in previous wind tunnel experiments. The drag coefficients of these crown areas in the defoliation season were smaller than those measured in the leafy season.  相似文献   
35.
Summary The first genetic linkage map of Japanese bunching onion (Allium fistulosum) based primarily on AFLP markers was constructed using reciprocally backcrossed progenies. They were 120 plants each of (P1)BC1 and (P2)BC1 populations derived from a cross between single plants of two inbred lines: D1s-15s-22 (P1) and J1s-14s-20 (P2). Based on the (P2)BC1 population, a linkage map of P1 was constructed. It comprises 164 markers – 149 amplified fragment length polymorphisms (AFLPs), 2 cleaved amplified polymorphic sequences (CAPSs), and 12 simple sequence repeats (SSRs) from Japanese bunching onion, and 1 SSR from bulb onion (A. cepa) – on 15 linkage groups covering 947 centiMorgans (cM). The linkage map of P2 was constructed with the (P1)BC1 population and composed of 120 loci – 105 AFLPs, 1 CAPS, and 13 SSRs developed from Japanese bunching onion and 1 SSR from bulb onion – on 14 linkage groups covering 775 cM. Both maps were not saturated but were considered to cover the majority of the genome. Nine linkage groups in P2 map were connected with their counterparts in P1 map using co-dominant anchor markers, 13 SSRs and 1 CAPS.  相似文献   
36.
Journal of Soils and Sediments - Sediment oxygen demand (SOD) measurement currently requires a long preparation time and bulky experimental equipment, which represent major obstacles to conducting...  相似文献   
37.
Both stem and crown mass affect tree resistance to uprooting   总被引:1,自引:0,他引:1  
To examine the hypothesis that both stem and crown mass affect the resistance of a tree to uprooting and that tree resistance increases with increasing crown mass, we conducted tree-pulling experiments on three Picea glehnii plantations (stands A, B, and C: 27–32 years old) that differed in tree density and slenderness ratio. Allometries between crown and stem masses and between the critical uprooting moment and stem mass differed significantly among the three stands, with the crown mass and critical moment significantly larger in stand C than in stands A or B, despite the same stem mass. These results quantitatively verified our hypothesis. Allometries between crown and stem masses and between critical uprooting moment and stem mass were highly significant in each stand but were stand specific. Therefore, these allometries can be used to estimate tree resistance to uprooting in a given stand but not for data compiled from stands of various conditions and tree shapes. The allometry between critical moment and aboveground mass did not differ among the three Picea stands; thus, it is not stand specific and is generally appropriate to use for estimating tree resistance. To increase tree resistance to uprooting, we recommend light management for Picea glehnii plantations and probably other coniferous plantations as well.  相似文献   
38.
Background: Progress of forest production in response to the environment requires a quantitative understanding of leaf area development. Therefore, it is necessary to investigate the dynamics of seasonal crown foliage in order to understand the productivity of mangroves, which play an important role in the subtropical and tropical coastlines of the world. Method: Crown foliage dynamics of the mangrove Rhizophora styloso were studies to reveal patterns of leaf recruitment, survival and seasonal leaf area growth. Results: Flushing of leaves occurred throughout the year, but both flushing and leaf area growth pattern of leaves varied with season. Maximum flushing occurred in summer, but leaf areas did not differ significantly with season. The half-expansion period is longer, and the intrinsic rate of increase was lower in winter. Summer flushed leaves grew faster at their initial stage and reached their maximum area over a shorter period of time. The difference in temperature and air vapor pressure deficit (VPD) between summer and winter contributed to the present dynamics of foliage patterns. The mean leaf longevity was estimated to be 13.1 month. The crown foliage area was almost stable throughout the year. Conclusions: Homeostatic control of the crown foliage area may be accompanied by the existence of ecophysiological mechanisms in R. stylosa. Integrating crown foliage dynamics into forest models represents an important step towards incorporating physiological mechanisms into the models for predicting growth responses to environmental changes and for understanding the complex responses of tree growth and litter production.  相似文献   
39.
40.
To evaluate windthrow resistance with respect to stem breakage, a nondestructive method for determining the shape of trunk cross sections was developed. In this method, the coordinates of multiple gauge points set on the perimeter of a trunk are calculated by measuring the distances between them. The shape between the gauge points is generated with the use of a profile gauge placed between them. Measurement tests were conducted using profile gauges with lengths of 300 and 900 mm on model specimens with four shape patterns and four different diameters. The accuracy of the estimation was verified by comparing the section modulus calculated for the generated image and for the photograph. The average ratio of section modulus (generated/photo) for all specimens was 0.994, which indicates that the proposed method is highly accurate. The section moduli of hollow trunks can be evaluated using the profile method together with the drill resistance technique on the condition that 26% of the trunk diameter could be drilled without skew.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号