首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132513篇
  免费   7274篇
  国内免费   93篇
林业   5385篇
农学   4272篇
基础科学   834篇
  17044篇
综合类   21485篇
农作物   5402篇
水产渔业   6691篇
畜牧兽医   67978篇
园艺   1801篇
植物保护   8988篇
  2020年   1177篇
  2019年   1376篇
  2018年   2031篇
  2017年   2331篇
  2016年   2096篇
  2015年   1744篇
  2014年   2227篇
  2013年   5292篇
  2012年   4114篇
  2011年   5096篇
  2010年   3249篇
  2009年   3390篇
  2008年   4975篇
  2007年   4666篇
  2006年   4354篇
  2005年   4088篇
  2004年   3851篇
  2003年   3975篇
  2002年   3543篇
  2001年   4153篇
  2000年   4252篇
  1999年   3374篇
  1998年   1475篇
  1997年   1387篇
  1996年   1289篇
  1995年   1529篇
  1994年   1358篇
  1993年   1231篇
  1992年   2584篇
  1991年   2700篇
  1990年   2591篇
  1989年   2611篇
  1988年   2372篇
  1987年   2348篇
  1986年   2428篇
  1985年   2342篇
  1984年   1882篇
  1983年   1678篇
  1982年   1149篇
  1979年   1750篇
  1978年   1397篇
  1977年   1152篇
  1976年   1212篇
  1975年   1293篇
  1974年   1501篇
  1973年   1514篇
  1972年   1405篇
  1971年   1305篇
  1970年   1251篇
  1969年   1286篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Solberg  S.  Lazaridis  M.  Walker  S.-E.  Knudsen  S.  Semb  A. 《Water, air, and soil pollution》2003,148(1-4):289-321
A photochemical puff-trajectory model (Fotoplume) has been applied to simulate emissions, atmospheric transport and chemical transformations of pollutants from offshore oil and gas production in the North Sea. The above model was used in conjunction with the European Monitoring and Evaluation Programme (EMEP) regional Lagrangian oxidant model. The Fotoplume and EMEP models were used to evaluate the effects of the atmospheric emissions from the oil and gas exploration activity in the Norwegian sector of the North Sea. Deposition of nitrogen and formation of boundary level ozone in Southern Norway due to North Sea emissions of nitrogen oxides (NOx), carbon monoxide (CO) and volatile organic compounds (VOC) have been studied. The petroleum activity in the North Sea is calculated to contribute approximately 20% of the nitrogen deposition in the coastal areas of Norway in 1992. In addition, the models were used to estimate the AOT40 ozone exposure levels. The results indicate that emissions from British and Norwegian oil and gas exploitation sector separately contribute to less than 5% each of the AOT40 values for coniferous forests and meadows. Comparison of model calculations with experimental measurements is quite satisfactory and the models show realistic results for both the nitrogen deposition and AOT40 values.  相似文献   
992.
Development of aminopolycarboxylate chelants (APCs) having enhanced biodegradability is gaining increasing focus to replace the EDTA and its homologs with those used widely for the ex situ treatment of contaminated soils and are potential eco-threats. The paper reports the chelant-assisted extraction of the toxic metals (Cd, Cu, Pb, and Zn) from the metal-spiked European reference soils (Eurosoil 1 and Eurosoil 4) using biodegradable APCs, namely EDDS, GLDA, and HIDS. The effects of chelant-to-metal molar ratio, solution pH, and metal/chelant stability constants were evaluated, and compared with that of EDTA. The selectivity aptitude of the biodegradable chelants towards the toxic metals was assumed from the speciation calculations, and a proportionate correlation was observed at neutral pH. Pre- and post-extractive solid phase distributions of the target metals were defined using the sequential extraction procedure and dissolution of metals from the theoretically immobilized fraction was witnessed. The effect of competing species (Al, Ca, Fe, Mg, and Mn) concentrations was proven to be minimized with an excess of chelant in solution. The highlight of the outcomes is the superior decontamination ability of GLDA, a biodegradable APC, at minimum chelant concentration in solution and applicability at a wide range of pH environments.  相似文献   
993.
Most of the tillage erosion studies have focused on the effect of tractor-plough tillage on soil translocation and soil loss. Only recently, have a few studies contributed to the understanding of tillage erosion by manual tillage. Furthermore, little is known about the impact of tillage erosion in hilly areas of the humid sub-tropics. This study on tillage erosion by hoeing was conducted on a purple soil (Regosols) of the steep land, in Jianyang County, Sichuan Province, southwestern China (30°24′N and 104°35′E) using the physical tracer method.

The effects of hoeing tillage on soil translocation on hillslopes are quite evident. The tillage transport coefficients were 26–38 kg m−1 per tillage pass and 121–175 kg m−1 per tillage pass respectively for k3- and k4-values. Given that there was a typical downslope parcel length of 15 m and two times of tillage per year in this area, the tillage erosion rates on the 4–43% hillslopes reached 48–151 Mg ha−1 per year. The downslope soil translocation is closely related to slope gradient. Lateral soil translocation by such tillage is also obvious though it is lower than downslope soil translocation. Strong downslope translocation accounts for thin soil layers and the exposure of parent materials/rocks at the ridge tops and on convexities in the hilly areas. Deterioration in soil quality and therefore reduction in plant productivity due to tillage-induced erosion would be evident at the ridge tops and convex shoulders.  相似文献   

994.
The level of compaction induced on cultivated fields through trafficking is strongly influenced by the prevailing soil-water status and, depending on the attendant soil degradation, vital soil hydraulic processes could be affected. Therefore, understanding the relationship between field soil-water status and the corresponding level of induced compaction for a given load is considered an imperative step toward a better control of the occurrence of traffic-induced field soil compaction. Pore size distribution, a fundamental and highly degradable soil property, was measured in a Rhodic Ferralsol, the most productive and extensively distributed soil in Western Cuba, to study the effects of three levels of soil compaction on soil water characteristic parameters. Soil bulk density and cone penetration index were used to measure compaction levels established by seven passes of a 10 Mg tractor at three soil-water statuses corresponding to the plastic (Fs), friable (Fc) and relatively dry soil (Ds) consistency states. Pore size distribution calculated from soil water characteristic curves was classified into three pore size categories on the basis of their hydraulic functioning: >50 μm (f>50 μm), 50–0.5 μm (f50–0.5 μm) and <0.5 μm (f<0.5 μm). The greatest compaction levels were attained in the Fs and Fc soil water treatments, and a significant contribution to compaction was attributed to the existing soil water states under which the soil compaction was accomplished. Average cone index (CI) values in the range of 2.93–3.70 MPa reflected the accumulation of f<0.5 μm pores, and incurred severe reductions in the volume of f>50 μm pores in the Fs and Fc treatments, while an average CI value of 1.69 MPa indicated increments in the volume of f50–0.5 μm in the Ds treatment. Despite the differential effects of soil compaction on the distribution of the different pore size categories, soil total porosity (fTotal) was not effective in reflecting treatment effects. Soil water desorption at the soil water potentials evaluated (0.0 to −15,000 cm H2O) was adversely affected in the f<0.5 μm dominated treatments; strong soil water retention was observed with the predominance of f<0.5 μm, as was confirmed by the high water content at plant wilting point. Based on these findings, the use of field capacity water content as the upper limit of plant available soil water was therefore considered inappropriate for compacted soils.  相似文献   
995.
Growth and soil N supply in young Eucalyptus tereticornis stands at two sites in Kerala, India, were examined in response to cover cropping with three legume species (Pueraria phaseoloides, Stylosanthes hamata, and Mucuna bracteata). The effects of legume residues on soil N supply were investigated in a long-term (392 day) laboratory incubation using leaching micro-lysimeters. Residues from the eucalypt and legume species had different rates of net N release during the laboratory incubation. Net N release was significantly related to residue N concentration (R2 =0.94), the C:N ratio (R2 =0.91), the lignin:N ratio (R2 =0.83), and the (lignin + soluble polyphenol):N ratio (R2 =0.95). Nitrogen release rates declined in the order Mucuna > Pueraria > Eucalyptus > Stylosanthes. There was no net N release from Stylosanthes residues during the 392-day laboratory incubation, whereas Mucuna and Pueraria released N throughout the incubation period. Net N release from mixtures of legume and eucalypt residues was not additive in the early phase of the incubation, probably because eucalypt residues initially immobilized a portion of the legume-derived N in addition to the soil-derived N. Legume establishment had no significant effect on tree growth at one site (Kayampoovam), but resulted in depressed tree growth at the lower rainfall site (Punnala) at 18 months. There were no significant treatment effects on growth at Punnala after that time. Cover cropping with legumes during the early phase of forest plantation growth may be a useful mechanism to enhance soil N supply and optimize the synchrony between N supply and tree N uptake. Although these effects did not translate into improved plantation growth in the 3 years of this study, improved soil organic matter and N fertility may help ensure sustainable productivity over several rotations in the future. This study showed that the effect of legumes on N dynamics varies markedly with legume species. This, together with other factors (e.g. competition with trees, N fixation capacity), will be important in selecting suitable species for cover cropping in forest plantations.  相似文献   
996.
The photosensitized isomerization reaction of the natural cis carotenoid bixin (methyl hydrogen 9'-cis-6, 6'-diapocarotene-6, 6'-dioate) with rose bengal or methylene blue as the sensitizer in acetonitrile/methanol (1:1) solution was studied using UV-vis spectroscopy, high-performance liquid chromatography (HPLC), and time-resolved spectroscopic techniques, such as laser-flash photolysis and singlet oxygen phosphorescence detection. In both N(2)- and air-saturated solutions, the main product formed was all-trans-bixin. The observed isomerization rate constants, k(obs), decreased in the presence of air or with increase in the bixin concentration, suggesting the participation of the excited triplet state of bixin, (3)Bix, as precursor of the cis--> trans process. On the other hand, bixin solutions in the absence of sensitizer and/or light did not degrade, indicating that the ground state of bixin is stable to thermal isomerization at room temperature. Time-resolved spectroscopic experiments confirmed the formation of the excited triplet state of bixin and its deactivation by ground state bixin and molecular oxygen quenching processes. The primary isomerization products only degraded in the presence of air and under prolonged illumination conditions, probably due to the formation of oxidation products by reaction with singlet molecular oxygen. An energy-transfer mechanism was used to explain the observed results for the bixin transformations, and the consequences for food color are discussed.  相似文献   
997.
Formation of flavor compounds from branched-chain alpha-keto acids in fermented foods such as cheese is believed to be mainly an enzymatic process, while the conversion of phenyl pyruvic acid, which is derived from phenylalanine, also proceeds chemically. In this research, the chemical conversion of alpha-keto acids to aldehydes with strong flavor characteristics was studied, with the main focus on the conversion of alpha-ketoisocaproic acid to the aldehyde 2-methylpropanal, and a manganese-catalyzed reaction mechanism is proposed for this conversion. The mechanism involves keto-enol tautomerism, enabling molecular oxygen to react with the beta-carbon atom of the alpha-keto acid, resulting in a peroxide. This peroxide can react in several ways, leading to unstable dioxylactone or noncyclic intermediates. These intermediates will break down into an aldehyde and oxalate or carbon oxides (CO and CO(2)). All the alpha-keto acids tested were converted at pH 5.5 and in the presence of manganese, although their conversion rates were rather diverse. This chemical reaction might provide new ways for controlling cheese flavor formation with the aim of acceleration of the ripening process or diversification of the flavor characteristics.  相似文献   
998.
Twenty-one free amino acids present in several samples of quince fruit (pulp and peel) and quince jam (homemade and industrially manufactured) were analyzed by GC/FID. The analyses showed some differences between quince pulps and peels. Generally, the highest content in total free amino acids and in glycine was found in peels. As a general rule, the three major free amino acids detected in pulps were aspartic acid, asparagine, and hydroxyproline. For quince peels, usually, the three most abundant amino acids were glycine, aspartic acid, and asparagine. Similarly, for quince jams the most important free amino acids were aspartic acid, asparagine, and glycine or hydroxyproline. This study suggests that the free amino acid analysis can be useful for the evaluation of quince jam authenticity. It seems that glycine percentage can be used for the detection of quince peel addition while high alanine content can be related to pear addition.  相似文献   
999.
Farmers are applying very high amounts of N fertilizer (sometimes >900 kg N/ha), commonly (NH4)2SO4, to irrigated potato (Solanum tuberosum, L.) grown on sandy textured soils in the Cappadocia region of Turkey. To obtain information on potato yield, N uptake, N fertilizer residue in the soil and the portion of N fertilizer leached below 200 cm soil depth, nine field experiments were conducted at three different locations in 1992, 1993 and 1994. The N rates used in these experiments were 0, 200, 400, 600, 800 and 1,000 kg N/ha within a completely randomized block design with three replicates. N fertilizer was applied in two equal portions; one at planting and one just before the first irrigation. Although all yield data were used to find out the marketable tuber yield, the N rate response curve and the fate of applied fertilizer N was determined only for the 400 and 1,000 kg N/ha rates. Isotope microplots were established where 15N-labelled (NH4)2SO4 was applied at 5.0 atom % and 2.5 atom % excess enrichments for the 400 kg N/ha and 1,000 kg N/ha rates, respectively. At harvest, marketable and dry tuber yield was determined for all N rates. Dry tuber and leaf plus vine yields were determined for the isotope microplots and they were analysed for the % N and 15N atom % excess. The % N derived from fertilizer and N use efficiency (%NUE) were calculated for the plant samples. The 15N-labelled residue left in 0-200 cm soil was also determined. The amount of N fertilizer leached below 200 cm soil depth was also calculated. 15N-labelled NO3- and total NO3- of the groundwater from wells were determined at different dates. Our results show that the optimum marketable tuber yield was obtained with 600 kg N/ha. Tuber N uptake was increased slightly, while leaf plus vine N uptake increased considerably when the N rate was increased from 400 to 1,000 kg N/ha. The %NUE values decreased nearly by half and the amount of N fertilizer in the 0-200 cm soil layer increased more than 3 times when the N rate was increased from 400 to 1,000 kg N/ha. Nearly half of the applied fertilizer N (45.6%) at 400 kg N/ha and more than half of the applied fertilizer N (60.8%) at 1,000 kg N/ha was still in the 0-200 cm soil layer after harvest. Four times more N fertilizer was leached below 200 cm soil depth when 1,000 kg N/ha N was applied instead of 400 kg N/ha. Our results also indicate that there is a potential contamination of groundwater due to leaching of the applied N fertilizer.  相似文献   
1000.
Exotic weeds are invading rangelands of the western United States at unprecedented rates. Understanding plant-soil relationships and competitive interactions of invasive weeds is crucial in long-term control strategies. In a greenhouse experiment, we investigated the influence of soil nutrient depletion on plant growth and plant competition between the exotic invasive weeds, Lepidium latifolium (invading wetlands) and Bromus tectorum (invading a multitude of habitats). Plants were grown individually and in combination until L. latifolium flowered, then roots and aboveground mass were harvested. Soil in individual pots was homogenized, subsamples collected for nutrient analyses, and the soil was re-planted to the same species, grown, and harvested twice more for a total of three growth cycles. As nutrient supplying capacity of the soil declined through growth cycles, aboveground mass of L. latifolium decreased significantly (PА.05) and growth potential of B. tectorum surpassed that of L. latifolium. Only bicarbonate-extractable soil ortho-P positively correlated with plant mass of L. latifolium. A separate experiment demonstrated that L. latifolium has a narrow window of soil water potentials for optimal growth; greatest growth at -20 kPa with significantly declining growth at saturation and -400 kPa. Our data suggest that L. latifolium primarily invades wetlands because the high soil water content reduces tortuosity and allows efficient transport of nutrients to this sparsely rooted species. When soil moisture and/or the nutrient supplying capacity of the soil declines, plants with greater root density can out-compete L. latifolium. Monocultural stands of L. latifolium may be self-limiting in time as available nutrients, particularly P, are biocycled to drier upper soil layers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号