首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   2篇
  国内免费   12篇
农学   8篇
  33篇
综合类   17篇
农作物   1篇
畜牧兽医   1篇
植物保护   33篇
  2020年   3篇
  2019年   6篇
  2018年   2篇
  2017年   3篇
  2016年   6篇
  2015年   5篇
  2014年   10篇
  2013年   14篇
  2012年   6篇
  2011年   4篇
  2010年   11篇
  2009年   9篇
  2008年   4篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  1991年   1篇
排序方式: 共有93条查询结果,搜索用时 62 毫秒
61.
SO_4~(2-)是盐渍土阴离子中的主要离子,但目前针对不同人为干扰区域土壤中SO_4~(2-)反演研究却鲜有报道。土壤高光谱与土壤某元素间的关系表现为非线性,传统线性偏最小二乘模型(PLSR)对土壤元素的反演精度有限。本文以新疆昌吉回族自治州境内不同人为干扰区域的盐渍化土壤为研究对象,以土壤的野外高光谱和SO_4~(2-)含量为数据源,对原始(R)和对数(LogR)变换后的高光谱分别进行0阶、一阶和二阶微分预处理,选择通过0.05显著性水平的波段为敏感波段,将敏感波段对应的高光谱反射率作为非线性BP神经网络模型的输入变量,并设定BP的隐藏节点为300,学习速率为0.01,最大迭代次数为1 000,训练函数为trainscg。从SO_4~(2-)的真实值与预测值的散点图、拟合效果图和BP训练过程3个方面,定量分析无人为干扰(A区)和有人为干扰(B区)土壤SO_4~(2-)含量,并与PLSR对比预测精度。仿真显示, A区二阶微分后的BP预测精度优于一阶微分,而B区一阶微分后的BP预测精度优于二阶微分。且不论在A区还是B区, LogR光谱变换的反演精度均优于R。最佳BP模型的相对预测性能(RPD)、决定系数(R2)、均方根误差(RMSE)和迭代次数,在A区分别为3.309、0.906、0.253和8次,在B区分别为2.234、0.844、0.786和45次,表明BP对A区SO_4~(2-)的预测能力非常强(RPD2.5),对B区SO_4~(2-)的预测能力较强(RPD为2.0~2.5)。而在A区和B区两种光谱变换的一阶和二阶微分中, PLSR的RPD值均在1.4与1.8之间,其预测性能一般;在B区的0阶微分中, PLSR的RPD值均小于1.0,其不能对SO_4~(2-)进行预测。因此, BP模型能对不同人为干扰区域的SO_4~(2-)进行有效的定量分析。  相似文献   
62.
传统电导率的反演模型采用整数阶微分(1阶或2阶)的预处理方法,忽略位于分数阶微分处的高光谱反射率信息。因此,本研究提出一种基于分数阶微分的盐渍土电导率高光谱估算方法,以新疆昌吉回族自治州境内的盐渍化土壤为研究靶区,于2017年5月采集0~20 cm的表层土壤样品,利用FieldSpec?3 Hi-Res光谱仪测量盐渍土的野外高光谱,并在实验室化验土壤的电导率理化参数。在Matlab2019a软件中编程实现0阶-2.0阶的Grünwald-Letnikov分数阶微分计算(阶数间隔为0.1)。分析土壤高光谱与电导率的相关系数曲线在21种微分处的变化规律,选择每阶微分的最大相关系数大于0.5时对应的波长为敏感波长,采用逐步多元线性回归模型对电导率进行预测。结果表明:分数阶微分预处理方法能够把相关系数曲线位于不同分数阶时的变化细节呈现出来,在全波段范围内出现更多的波峰和波谷信息。电导率的8个敏感波长为400 nm、418 nm、567 nm、1 667 nm、2 132 nm、2 193 nm、2 257 nm和2 258 nm。估算电导率的最佳模型位于分数阶1.5阶,其验证集的RPD值为1.99, R~2为0.81, RMSE为1.08,该模型因RPD值大于1.8对电导率的估算能力好。本研究探索了电导率在不同分数阶微分处的差异信息,为电导率的估算提供一种新的研究思路,对新疆干旱区盐渍土的改良提供了科学可靠的依据。  相似文献   
63.
基于盐(碱)生植被盖度的土壤碱化分级   总被引:6,自引:0,他引:6  
以土壤大面积碱化的新疆奇台绿洲为研究区,探讨了盐(碱)生植被盖度与土壤碱化指标pH、碱化度(ESP)、钠吸附比(SAR)、残余碳酸钠(RSC)、总碱度(TA)的关系。研究表明:研究区土壤存在大量的可代换性钠,碱化强烈。植被盖度与各土壤碱化指标均呈极显著的负相关关系,其与pH的相关系数最高,达0.810,其次为ESP,植被盖度主要受土壤碱化程度的影响。以盐(碱)生植被盖度为主要依据并结合多种土壤碱化指标对研究区碱化土壤进行分级:植被盖度50%左右,pH<8.0,ESP<3%,SAR<3,为非碱化土;植被盖度10%~40%,pH 8.0~9.5,ESP 3%~35%,SAR 3~40,为碱化土;植被盖度<10%,pH>9.5,ESP>35%,SAR>40,为碱土。以植被盖度对碱化土壤的响应为依据建立的土壤碱化分级标准既拓宽了碱化土壤分级的研究视角,也符合研究区的实际情况。  相似文献   
64.
根据奇台县平原井灌区的地下水埋深观测数据、野外调查数据、社会经济数据和农业气象资料,借助柯尔一道格拉斯生产函数,建立了根据不同农作物产量变化的地下水埋深变化生产函数模型.模拟结果显示:粮食作物产量对地下水埋深的影响最大,蔬菜瓜果次之,经济作物影响最小.它们每增加1%,引起的地下水位埋深平均增加的幅度分别是0.639%,0.120%和0.205%.模型通过了精度检验(r=0.987,P<0.0001),模拟结果与实测埋深值拟合较好,模拟精度的相对误差都小于5%.同时,由反映农作物灌溉耗水量与地下水埋深变化之间关系的公式得知:灌溉粮食作物引起的地下水下降幅度最大,占总下降幅度的70.4%,每年可使地下水位下降0.339 2m/a.灌溉蔬菜瓜果引起的地下水位下降的比重和速率(14.8%,0.071 5 m/a)略高于灌溉经济作物产生的变化(14.7%;0.0709 m/a).  相似文献   
65.
王凯龙  熊黑钢  张芳 《土壤》2014,46(3):544-549
为快速准确地估测土壤碱化程度,对实测波段范围为400~900 nm的土壤光谱数据进行了波段差、波段比、波段归一化3种预处理,采用偏最小二乘法(PLSR)建立了不同波段范围的土壤pH的预测模型,并利用测试集数据对模型进行精度检验。结果表明:采用归一化、波段比2种方式对原始光谱进行预处理,可有效地增强光谱与土壤pH的相关性,并抑制干扰信息,其中归一化最优。虽然可见光波段范围(400~750 nm)所建立的预测模型与全波段(400~900 nm)预测模型R2相同,但其RMSEP比全波段减少了0.059,RPD提高了0.2,说明该波段范围包括了反映土壤pH的大部分信息,是建立其预测模型的优势波段。因此,利用可见光波段的光谱数据,采用归一化预处理可以具有较好稳定性和预测能力地预测土壤pH的最佳模型(R2=0.90,RMSECV=0.104)。  相似文献   
66.
新疆绿洲中的耕地分布在不同的地貌上,常受到不同因素的制约,使得耕地退化和耕地质量产生较大的差异。准确了解不同地貌类型上的耕地土壤信息状况可为有针对性地对耕地进行改良和管理提供重要依据。选取阿勒泰地区的山前盆地、山前平原、南部河谷3种地貌类型的耕地土壤为研究对象,共采集了55个土壤样本,并测定土壤盐分因子(pH值、总盐含量)和土壤有机质含量。采用多元统计分析方法与指示克里格法对土壤盐分因子和有机质含量进行分析。结果表明:(1)盆地区、平原区和河谷区的土壤因子与有机质含量,由盆地-平原-河谷呈逐渐增大趋势。(2)从变异系数来看,3种地貌类型的pH值变异系数均小于10%,属弱变异性。平原区总盐含量的变异系数100%,属于强变异性,河谷区与盆地区土壤总盐含量及有机质含量的变异系数介于27%~100%之间,为低强度的变异。(3)阿勒泰地区耕地土壤有机质处于稍缺水平,平原区的土壤有机质含量变化范围的倍率最大,最大值为25.90 g/kg,约为最小值(5.11 g/kg)的5倍。其次为盆地区,河谷区的变化幅度最小。(4)河谷区总盐含量与有机质含量相关系数为0.829,极显著相关(P0.01),河谷区总盐含量与盆地区有机质含量的相关系数为0.829,呈极显著相关(P0.01)且均呈三次函数数学关系。盆地区总盐含量与有机质含量不相关,平原区总盐含量与有机质含量相关性一般且不显著,盐与有机质的关系可能受到地形、地貌的影响,导致盆地区与平原区盐含量与有机质含量不相关。(5)河谷区土壤总盐含量的基台效应C_0/(C_0+C)比值为0.984,系统空间自相关性很弱。平原区土壤总盐含量与有机质含量的基台效应C_0/(C_0+C)比值均为0.277,具有强烈的系统空间自相关性。(6)盐渍化风险评估结果表明,河谷区农田土壤存在较高的盐渍化风险,盆地区农田土壤则反之,平原区盐渍化风险为中度。说明阿勒泰地区耕地土壤有机质处于稍缺水平,土壤总盐含量处于较低水平,对作物生长不存在危害。但河谷区与平原区的盐渍化风险较高,应改进灌溉方式和种植制度,同时采用增施有机肥、进行秸秆还田等措施来促进棉花作物的稳产、高产,盆地区农田土壤最后应当采取相应的措施来预防盐渍化危害。  相似文献   
67.
通过对新疆于田县5种不同土地类型的小气候因子进行观测,探讨了不同土地类型气温、地温、相对湿度、风速、蒸发等小气候因子在特征值、逐日变化幅度、垂直变化上的差异性特征.结果表明:①沙漠、戈壁、棉花地、玉米地在气温、地温、风速、蒸发及其逐日变化幅度上依次递减,而相对湿度依次递增.②总体来看,各土地类型(下垫面)风速均随高度的增加而下降,地温则随土层深度的增加而减小,其变化幅度差异明显.除玉米地外,各下垫面越向上,气温越高,相对湿度越大.③5个下垫面的夜间蒸发量较白天迅速减少,尤以绿洲减少比例最大,达到86%.④具有过渡性质的交错带无论是因子特征值,还是垂直变化趋势、幅度均与沙漠、戈壁相似.甚至由于戈壁的海拔相对较高,交错带的特征值和变化幅度高于戈壁,而介于沙漠和棉花地之间.⑤由于自身水份与植被覆盖条件的不同,戈壁、沙漠的气温与相对湿度两因子的相关性较差,而玉米地、棉花地居中,交错带最好.  相似文献   
68.
为给小麦长势的遥感监测提供依据,利用多种植被指数对比分析了水浇地和旱地春小麦不同生育期冠层光谱及叶绿素含量的变化,并建立了不同地类春小麦叶绿素含量的最佳估测模型。结果表明,春小麦叶绿素含量在整个生育期呈先升后降趋势,且水浇地高于旱地。春小麦冠层光谱在可见光波段表现为阳坡和双面坡地>阴坡地>水浇地,而在近红外区域反之。在起身期-乳熟期,春小麦叶绿素含量分别与二次修正土壤调节植被指数和植被衰老反射率指数的相关性最好;在拔节-扬花期,水浇地和阴坡地的叶绿素含量分别与绿度植被指数和修正归一化差异指数相关性最好,阳坡和双面坡地则与二次修正土壤调节植被指数的相关系数最大。利用相关性最好的植被指数模拟春小麦叶绿素含量,水浇地在起身-扬花期宜用抛物线模型,乳熟期则适合用乘幂模型,且各模型r和检验r均大于0.88,拟合程度较高;阴坡、阳坡和双面坡地起身期适用指数模型,其余时期适合抛物线模型。  相似文献   
69.
为明确冻融过程对土壤盐分分布的影响,通过野外采样、室内分析的方法对比分析了奇台县农田冻融前、后土壤含盐量的空间变异性。结果表明:(1)冻融前,表层(0-20 cm)土壤含盐量(0.11%)最低,且基本随着土层深度的增加土壤含盐量逐渐增大。而土壤盐分空间分布的复杂性基本随着土层深度的增加逐渐减小。(2)冻融后,表层(0-20 cm)含盐量(0.14%)变为最高。春季积盐现象明显(主要发生在60 cm深度以上),但尤以表层最为严重(积盐率达30.0%)。模拟秋季灌溉洗盐效果显著,剖面平均(100 cm深度以上)含盐量减少率为8.16%。而且洗盐深度大于100cm。另外,各层土壤含盐量的变异性(中等变异性)未变,但变异系数增大(除40-60cm深度外)。剖面上部土壤盐分的理论模型由指数模型为主均变为高斯模型,且变程增大明显;而底部由高斯模型转为球状模型,且变程变化不大。  相似文献   
70.
利用LI-8100土壤碳通量测量仪测定了在自然升温下的强碱土土壤呼吸速率、温度(气温和土壤温度)、湿度(空气相对湿度和土壤湿度)数据,通过分析它们的相关关系,探讨土壤呼吸速率的变化特征及其主要影响因素,建立了相应的回归模型并进行了精度检验。结果表明:(1)各实验土壤呼吸速率的日变化过程均呈单峰型,日间为正呼吸,夜间为负呼吸。(2)平均气温由4.4℃升至15.84℃和17.61℃时,平均土壤呼吸则由-0.07μmol m-2 s-1增加至0.07和0.31μmol m-2 s-1。温度越高,土壤呼吸速率越大。(3)土壤呼吸速率与气温、土壤温度、土壤湿度呈正相关,与空气相对湿度呈负相关,并且随着温度的升高,相关系数均不断增大。实验1中气温与土壤呼吸的相关系数为0.75,实验2、3则增至0.96和0.98。(4)土壤呼吸速率的最主要直接影响因子为气温,土壤湿度通过气温对土壤呼吸速率的间接影响与气温的影响相当。(5)土壤呼吸速率无论与温、湿度中单个因子还是温湿度双因子构建的回归方程,其拟合优度和模型精度均随温度的升高而增大,在气温与土壤呼吸速率构建的方程中,其R2由实验1的0.5544增至实验2、3的0.9284和0.9685,RMSE则由0.7055减至0.3011、0.1560。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号