首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
农学   1篇
  1篇
综合类   19篇
畜牧兽医   3篇
园艺   1篇
  2022年   5篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2016年   4篇
  2015年   3篇
  2014年   3篇
  2013年   3篇
排序方式: 共有25条查询结果,搜索用时 0 毫秒
21.
【目的】研究新疆南疆地区水肥耦合对滴灌冬小麦生理生长及产量的影响。【方法】以新冬52号为供试材料,两因素裂区试验设计,设置灌水处理3个水平:W1(2 241m3/hm2)、W2(3 486m3/hm2)、W3(4 731m3/hm2);设置施肥处理(氮素)4个水平:N0(0 kg/hm2)、N1(135 kg/hm2)、N2(195 kg/hm2)、N3(255 kg/hm2),分析不同水氮组合对滴灌冬小麦株高、叶面积、光合特性(净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)、细胞间隙CO2浓度(Ci)、产量及水氮利用效率的变化。【结果】(1)随着灌水量的增加或施N的增加, 新冬52号冬小麦的株高、叶面积、光合特性和产量呈现同步增加趋势;(2)但灌水量过少时(W1处理),增加N并不明显提高产量和光合性能;当灌水量提高到W2和W3水平后,株高、叶面积、光合特性和产量随着施N的增加呈现明显的增加趋势,表现出以水带肥的良好效果。 (3)在各处理中, W3N2(灌水4 731m3/hm2、施氮N195kg/hm2)的产量最大(8 570 kg/hm2),相对应的各项光合特性值也达到最大值; (4)W2N2处理(灌水3 486m3/hm2、施N195kg/hm2)的产量则处于次大值(8 465 kg/hm2),W2N2的光合特性值并非最大,但其N农学利用率达到最大值(16.69 kg/kg ),灌溉水生产效率也达到最大值(1.66 kg/m3 );(5)W2N2与W3N2相比,虽然产量减少了105 kg/hm2(减少1.2%),但灌水量减少了1 245 m3/h2(减少26.3%)、施肥量减少60 kg/hm2(减少23.53%)。【结论】灌水3 486 m3/hm2和氮肥195kg/hm2 的技术组合可作为新冬52号冬小麦的节本增效生产方案。  相似文献   
22.
[目的]了解不同种植年限枣棉间作土壤养分变化规律,以及科学地施肥管理.[方法]以南疆喀什地区不同种植年限的枣棉间作土壤为研究对象,分析种植2~4a枣棉间作土壤养分的短期变化情况.[结果]随着枣树种植年限的增加,土壤pH和电导有不同程度的上升,差异显著,土壤盐分有一定的累积;土壤养分有机质、碱解氮、速效钾随着种植年限的增加均有不同程度的累积,而速效磷却随种植年限的增加有所降低;其中养分主要累积在距树东侧50~100 cm,这与施肥方式有直接关系.[结论]该地区枣棉间作土壤存在一定土壤盐渍化趋势且不同养分指标随种植年限的延长在土壤中均有不同程度的累积现象.  相似文献   
23.
2019-2020年调查52个玉米品种,按生理成熟时间顺序分为9月初(PD1)、9月中旬(PD2)、9月末(PD3)和10月初(PD4)4个生理成熟段,分析不同阶段成熟的玉米品种生理成熟期籽粒含水率差异和生理成熟后脱水速率,以此分析不同成熟阶段玉米适宜机械粒收时期。结果表明:春玉米籽粒脱水分为快速脱水期和缓慢脱水期,其中快速脱水期日均脱水速率达0.388%~0.850%、缓慢脱水期脱水速率达0.051%~0.501%,且不同生理成熟段籽粒含水率差异不显著。PD1、PD2、PD3、PD4成熟段玉米籽粒含水率由28%降至20%历时时间分别为14~15 d、 32~35 d、31~34 d、 46~50 d ,所有玉米成熟所需时间约 14~50 d。研究建立籽粒含水率动态变化及其适宜机械粒收时间的预测方法,为南疆地区合理配置玉米粒收品种及确定适宜机械粒收时间提供了可行的技术方法。  相似文献   
24.
麦后复种饲料油菜不仅可以充分利用新疆地区在小麦收获后的光、热、水、土资源,还能扩大饲草供应;但饲料油菜生产加工技术尚不成熟,难以将饲料油菜加工成优质饲草,因此亟需适宜新疆滴灌复种饲料油菜的栽培及加工利用技术。本文作者通过对栽培技术及加工利用技术的不断优化,提出滴灌小麦复种饲料油菜生产技术,包括播前准备、品种选择、播种技术管理、生产技术管理、刈割时期、青贮利用、裹包利用等内容。  相似文献   
25.
【目的】研究不同溶解氧含量的增氧水对壤土土壤矿化作用和硝化作用的影响,分析增氧水输入提高土壤的供氮能力的作用机制。【方法】以壤土为供试土壤,采用室内土壤培养方法,选取常规水(RCK)、自然空气供氧曝气增氧(RD1)、33%增氧供氧曝气增氧(RD2)和90%增氧供氧曝气增氧(RD3)4个不同浓度增氧水输入,测定不同培养时间下不同浓度增氧水输入下壤土土壤的 NH -N和 NO --N含量,计算土壤净氮矿化量、净氮矿化速率、硝化率和硝化速率以及拟合各处理条件下土壤 NH -N含量与培养时间t的回归公式以及模型特征值,分析不同处理的输入效果。【结果】与达到最大消耗速率所用时间的变化趋势相反,4个不同处理中初始消耗速率V0和最大消耗速率Vmax的趋势变化均为RCK123,初始消耗速率V0的最大值(8.950 1 mg/(kg・d)),最大消耗速率Vmax的最大值(13.019 8 mg/(kg・d))和达到最大消耗速率所用时间TVmax的最小值(1.502 1 d)均是RD3处理;相同增氧浓度条件下,壤土土壤净氮矿化量和硝化率随时间的增加呈现上升趋势,而壤土土壤净氮矿化速率和净硝化速率随时间的增加呈现下降趋势;在同一培养时间时期下,壤土土壤净氮矿化量、净氮矿化速率、硝化率以及净硝化速率的变化趋势均呈RCK123处理的关系。【结论】增加输入水氧浓度会加速壤土氮素转化,增强土壤的矿化作用和硝化作用,改善土壤微生物的活动及矿物质的转化,提高土壤的供氮能力。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号