排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
为实现滚动轴承复合故障自适应诊断,该研究提出了基于循环含量比-归一化谐波比例(Ratio of Cyclic Content-Normalized Proportion of Harmonics,RCC-NPH)融合指标改进的最大二阶循环平稳盲解卷积(Maximum second order cyclostationary blind deconvolution,CYCBD)方法。首先,构建了RCC-NPH融合指标,解决了CYCBD算法循环频率确定依赖先验知识及遍历所有故障频率空间耗时的问题。其次,根据RCC-NPH融合指标图估计CYCBD的循环频率集,实现了CYCBD参数的自适应选择。再次,采用自适应参数CYCBD方法对输入信号进行解卷积运算,提取了不同循环频率对应的故障信号。最后,对提取的故障信号进行Hilbert包络解调分析,完成故障的辨识。利用该方法分别对仿真信号和轴承复合故障信号进行试验,均能有效检测信号中包含的故障成分,实现了复合故障的自适应诊断。与其他指标相比,该方法能够有效避免噪声和谐波的干扰,适用于复合故障诊断。 相似文献
2.
针对中国大学生方程式汽车大赛规则,通过轻量化来优化转向系统,同时控制成本。以盐城工学院YMR野马第4代电动方程式赛车为例,该车采用后轮轮毂电机驱动,同时电子差速取代了传统的机械差速。首先从转向系统的机构着手,进行梯形优化,使其实际使用效果更加符合理想阿克曼原理。通过CAD作图法进行分析,利用MATLAB进行优化确定最终的梯形臂参数。最后,根据优化后的参数进行ANSYS分析。结果表明:转向时动力损失有所减小,防止了轮胎的过度磨损,为轮毂电机的电子差速问题提供数据支持。 相似文献
3.
4.
从遥感影像中提取作物播种面积和空间分布对耕地可持续发展和粮食安全意义重大。目前的遥感小麦制图研究主要依靠光学图像和高复杂度的分类方法,且现有分类算法在小样本条件下、耕地细碎化农业区的分类性能以及时间迁移性能仍然不确定,探索适合小样本的低复杂度的稳定算法具有现实意义。该研究基于Google Earth Engine(GEE)遥感云平台,使用Sentinel-1 SAR和Sentinel-2光学时间序列遥感数据,评估了时间加权动态时间规整算法(Time-Weighted Dynamic Time Warping,TWDTW)、随机森林算法(Random Forest,RF)和基于相似性测度(Difference and Similarity Factor,DSF)的OTSU阈值法在小样本条件下、耕地细碎化农业区的冬小麦制图精度和时间迁移性能。研究结果表明,在有限样本条件下,TWDTW方法小麦制图精度最高,总体精度(Overall Accuracy,OA)和Kappa系数分别为0.923和0.843;其次是RF(OA=0.906,Kappa=0.809)和DSF算法(OA=0.887,Kappa=0.767);基于欧式距离的OTSU阈值法分类精度最低。当利用算法进行时间迁移分类提取2021年的冬小麦分布图时,TWDTW和DSF算法表现出更好的稳定性且分类精度优于RF算法,其中TWDTW算法的精度最高,OA和Kappa系数分别为0.889和0.755;RF算法分类精度下降明显,OA和Kappa系数分别降低了约0.07和0.19,说明RF算法的迁移分类性能较差。综合来看,TWDTW算法对样本和耕地细碎化的敏感性较低,可以在有限样本条件下实现耕地细碎化农业区的高精度连续冬小麦制图;而RF算法对样本和耕地细碎化的敏感性较高,在有限样本条件下的耕地细碎化农业区进行连续冬小麦制图时稳定性较差。 相似文献
5.
6.
设计了一套适用于中国大学生电动方程式赛车的转向系统。该车采用的是后轮轮毂电机驱动,同时,传统的机械差速被电子差速所取代,配合电子差速,为其准确传递信号并为差速提供有效信息。从转向系统的机构设计开始,使其实际使用效果更加符合理想阿克曼原理。最后,将根据优化后的结果为电子差速提供理论上的数据支持。 相似文献
7.
9.
针对非凸全变分去噪(non-convex total variation denoising,NCTVD)在提取电机轴承复合微弱故障时存在稀疏性能欠佳和无法准确识别故障的问题,该研究提出一种基于非凸惩罚融合套索模型(non-convex fused lasso model,NCFLM)的复合故障诊断方法。基于反正切惩罚因子的NCTVD模型引入广义极小极大凹函数(generalized minimax concave,GMC),将其拓展成融合套索模型的形式并得到NCFLM,利用前向后向算法(forward-backward algorithm,FBA)对该模型进行求解,再引入遍历方法寻找相关峭度最大时正则化参数的最优取值并将求解结果与其他非凸惩罚模型进行对比。最后,利用采集到的电机轴承复合故障信号进行NCFLM处理,提取复合故障特征,试验结果表明,NCFLM的原子压缩数目、收敛速度、重构准确度、稀疏度、L0范数逼近程度分别比原始arctan-NCTVD模型提高了9.2%、6.6%、10%、46.2%和15%,可实现电机轴承复合故障的准确诊断。 相似文献
1