首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17876篇
  免费   83篇
  国内免费   113篇
林业   3787篇
农学   1455篇
基础科学   286篇
  3040篇
综合类   1111篇
农作物   2161篇
水产渔业   1848篇
畜牧兽医   1300篇
园艺   1142篇
植物保护   1942篇
  2023年   27篇
  2022年   49篇
  2021年   63篇
  2020年   68篇
  2019年   61篇
  2018年   2783篇
  2017年   2742篇
  2016年   1226篇
  2015年   128篇
  2014年   71篇
  2013年   63篇
  2012年   881篇
  2011年   2226篇
  2010年   2169篇
  2009年   1328篇
  2008年   1371篇
  2007年   1651篇
  2006年   97篇
  2005年   153篇
  2004年   143篇
  2003年   189篇
  2002年   96篇
  2001年   51篇
  2000年   82篇
  1999年   39篇
  1998年   18篇
  1997年   22篇
  1996年   26篇
  1995年   27篇
  1994年   13篇
  1993年   25篇
  1992年   24篇
  1991年   10篇
  1990年   8篇
  1989年   15篇
  1988年   23篇
  1987年   11篇
  1986年   8篇
  1985年   3篇
  1984年   5篇
  1982年   5篇
  1981年   8篇
  1980年   3篇
  1979年   3篇
  1978年   7篇
  1977年   4篇
  1971年   4篇
  1968年   5篇
  1964年   12篇
  1963年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Total gaseous mercury (TGM) fluxes from the forest floor and a boreal wetland were measured by a flux chamber technique coupled with an automatic mercury vapour analyser. The fluxes were measured at three sampling sites in southern Finland, 61°14′ N, 25°04′ E in summer 2007, with additionally in situ TGM concentrations in the air at one of the sites and mercury bulk deposition at another. Most of the flux data were collected during the daytime. At one of the sites, diurnal flux behaviour was studied, and a clear cycle with an afternoon maximum and a night minimum was observed. The highest emissions (up to 3.5 ng m−2 h−1) were observed at the forest floor site having a moss and grass cover. At the wetland and litter-rich forest floor sites, the emissions were below 1 ng m−2 h−1 and sometimes negative (down to −1.0 ng m−2 h−1), indicating mercury uptake. The measured average fluxes in August were 0.9 ± 1.1 and 0.2 ± 0.3 ng m−2 h−1 for the forest floor sites and wetland sites, respectively. The flux data were compared with the mercury bulk deposition, which proved to be of the same magnitude, but opposite in sign. At the mossy forest floor site, the extrapolated TGM emissions were 130% of the Hg deposition in August 2007. Comparison with other studies showed that the fluxes in background areas are relatively uniform, regardless of measurement site location and method used. Airborne TGM remained at the background level during the study, with an average value of 1.3 ± 0.2 ng m−3; it frequently showed a diurnal cycle pattern.  相似文献   
92.

Purpose  

Soil contamination by multiple organic and inorganic contaminants is common but its remediation by hyperaccumulator plants is rarely reported. The growth of a cadmium (Cd) hyperaccumulator Sedum alfredii and removal of contaminants from Cd and polycyclic aromatic hydrocarbons (PAHs) co-contaminated soil were reported in this study.  相似文献   
93.
Combinations of sequential anaerobic and aerobic process enhance the treatment of textile wastewater. The aim of this study was to investigate the treatment of diazo dye Reactive Black 5 (RB5)-containing wastewater using granular activated carbon (GAC)–biofilm sequencing batch reactor (SBR) as an integration of aerobic and anaerobic process in a single reactor. The GAC–biofilm SBR system demonstrated higher removal of COD, RB5 and aromatic amines. It was observed that the RB5 removal efficiency improved as the concentration of co-substrate in the influent increased. The alternative aeration introduced into the bioreactor enhanced mineralization of aromatic amines. Degradation of RB5 and co-substrate followed second-order kinetic and the constant (k 2) values for COD and RB5 decreased from 0.002 to 0.001 and 0.004 to 0.001 l/mg h, respectively, as the RB5 concentration increased from 100 to 200 mg/l in the GAC–biofilm SBR system.  相似文献   
94.

Purpose

Soil microorganisms are important in the cycling of plant nutrients. Soil microbial biomass, community structure, and activity are mainly affected by carbon substrate and nutrient availability. The objective was to test if both the overall soil microbial community structure and the community-utilizing plant-derived carbon entering the soil as rhizodeposition were affected by soil carbon (C) and nitrogen (N) availability.

Materials and methods

A 13C-CO2 steady-state labeling experiment was conducted in a ryegrass system. Four soil treatments were established: control, amendment with carboxymethyl cellulose (CMC), amendment with ammonium nitrate (NF), combined CMC and NF. Soil phospholipid fatty acid (PLFA) and 13C labeling PLFA were extracted and detected by isotope ratio mass spectrometer.

Results and discussion

The combined CMC and NF treatment with appropriate C/N ratio (20) significantly enhanced soil microbial biomass C and N, but resulted in lower soil inorganic N concentrations. There was no significant difference in soil PLFA profile pattern between different treatments. In contrast, most of the 13C was distributed into PLFAs 18:2ω6,9c, 18:1ω7c, and 18:1ω9c, indicative of fungi and gram-negative bacteria. The inorganic-only treatment was distinct in 13C PLFA pattern from the other treatments in the first period of labeling. Factor loadings of individual PLFAs confirmed that gram-positive bacteria had relatively greater plant-derived C contents in the inorganic-only treatment, but fungi were more enriched in the other treatments.

Conclusions

Amendments with CMC can improve N transformation processes, and the ryegrass rhizodeposition carbon flux into the soil microbial community is strongly modified by soil N availability.
  相似文献   
95.

Purpose

Under a global warming scenario, understanding the response of soil organic carbon fractions and aggregate stability to temperature increases is important not only for better understanding and maintaining relevant ecosystem services like soil fertility and crop productivity, but also for understanding key environmental processes intimately related with the maintenance of other regulatory ecosystem services like global climate change mitigation through carbon sequestration. An increase in temperature would accelerate the mineralization of soil organic carbon. However, the properties of organic carbon remained in soil after mineralization is not well known.

Materials and methods

Mollisol was collected at 0–20-cm depth from maize (Zea mays L.) field in Northeast China. A 180-day incubation experiment was conducted at three different temperatures (10, 30, and 50 °C) under constant soil moisture (60 % water holding capacity). Soil samples were assayed for total organic carbon (TOC), water-soluble organic carbon (WSOC), easily oxidizable organic carbon (EOC), humic fractions carbon, aggregate-associated carbon, and water stability of aggregates. Elemental analysis and solid-state 13C nuclear magnetic resonance spectroscopy were used to characterize humic acid and humin fractions.

Results and discussion

The contents of soil TOC, EOC, humic fractions carbon, and aggregate-associated carbon decreased with the increase in temperature. The proportion of 2–0.25-mm macroaggregate and the mean weight diameter (MWD) of aggregates also decreased. The C, H, N, S, alkyl C, and O-alkyl C contents of humic acid and humin decreased, whereas the O, aromatic C, and carbonyl C contents increased. The H/C, aliphatic C/aromatic C, and O-alkyl C/aromatic C ratios in humic acid and humin fractions decreased.

Conclusions

The increase in temperature has a negative impact on soil organic carbon content, soil aggregation, and aggregate stability. Moreover, humic acid and humin molecules become less aliphatic and more decomposed with the increase in temperature.
  相似文献   
96.
土壤增氧方式对其氮素转化和水稻氮素利用及产量的影响   总被引:7,自引:3,他引:7  
以3种不同生态型水稻品种中浙优1号(水稻)、IR45765-3B(深水稻)和中旱221(旱稻)为材料,比较研究了不同增氧方式(T1-增施过氧化钙、T2-微纳气泡水增氧灌溉、T3-表土湿润灌溉和CK-淹水对照)下稻田土壤氮素转化和水稻氮素吸收利用特性。结果表明:1)增氧处理明显改善土壤氧化还原状况,3种增氧方式下土壤氧化还原电位均高于CK。稻田增氧促进土壤氮素硝化,在分蘖期和齐穗期T1、T2和T3的土壤硝化强度和脲酶活性均显著高于CK,反硝化强度显著低于CK。2)不同增氧处理对水稻氮素吸收的影响不同,在拔节期、齐穗期和完熟期3品种的植株氮素积累量均表现为T1、T2显著高于CK,而T3显著低于CK;在完熟期,T1处理下中浙优1号、IR45765-3B和中旱221植株氮素积累量分别较CK增加了21.2%、13.2%和17.0%,而T2处理下3品种的植株氮素积累量分别较CK增加了14.3%、6.9%和9.1%。3)与CK相比,T1和T2显著提高水稻籽粒产量和收获指数,氮素籽粒生产效率与CK无显著差异,而T3显著增加水稻氮素干物质生产效率和氮素籽粒生产效率。可见,施用过氧化钙和微纳气泡水增氧灌溉能有效改善稻田土壤氧化还原状况,不仅显著提高水稻产量,而且显著增强稻田氮的硝化而减少氮素损失,从而提高水稻氮素积累量和氮素收获指数。  相似文献   
97.
Emmer wheat (Triticum dicoccon Schrank, 2n = 4x = 28) consists in a hulled wheat; its cultivation has been drastically reduced during the last century as a consequence of its low yield. Recently, its agronomic and nutritive values, as well as the increase of popularity of organic agriculture, have led to a renewed interest making its cultivation economically viable in the marginal lands with an increase of the cultivated areas. In Italy, it mainly survives in few marginal lands of central and southern Italy, where local varieties, adapted to the natural environment from where they originate, are used; moreover, some selected lines have also been developed. In the present work, agro-morphological and qualitative traits, together with molecular analyses of 20 emmer accessions consisting of Italian landraces, breeding lines, and cultivars, were performed. The field experiments were conducted for two consecutive years (2001/2002–2002/2003) in two locations: Viterbo in central Italy, and Foggia in south Italy. The analyzed emmer wheat accessions showed a good amount of genetic variability for both evaluated agro-morphological and molecular traits. This study illustrates an increase in earliness, GY, TW, TKW, and YI going from landraces, breeding lines to cultivars, while the variability does not change proportionally.  相似文献   
98.
Heritage apple (Malus domestica Borkh. hybrids) and pear (Pyrus communis L. hybrid) trees grow in villages throughout Terceira Island, Azores, Portugal. Some of these pears have different names but similar morphology. The objective of this study was to determine synonymy, homology, and phylogeny of apples and pears from Terceira and to examine potential relationships of the island pears with standard apples and pears of Portuguese or American descent. Nine apple microsatellite markers were used to determine genetic relationships. Distance- and parsimony-based cluster analysis grouped these genotypes into separate apple and pear clades. The Terceira apples were divided into two clades: the maçā and the reineta-reinette. Among the 17 heritage apple genotypes, seven unique accessions were identified and four groups of synonyms, or possibly clones, were detected including: ‘Reineta Agosto’ and ‘Reineta Verde’ from Altares; ‘Reineta Castanha’ and ‘Reineta Verde Miuda’; ‘Maçā Pêra,’ ‘Maçā Calhau’, ‘Pêro Branco’ from Salga and from Terra-Chā and ‘Maçā Marmelo’; and the five genotypes ‘Maçā Sao Joao’, ‘Malápio Rosa’, ‘Maçā Gaspar’, ‘Maçā Branca’ and ‘Maçā Pato’. In addition, two homonyms were detected. ‘Pêro Vermelho’ from Terra Chā was a separate genotype from a tree from Doze Ribeiras of the same name, but Pêro Branco from Terra Chā appears to be a clone that can be distinguished by an additional allele at CH1F07a from a tree with that name from Salga. One pair of apple clones, ‘Reineta Agosto’ and ‘Reineta Verde’ from Altares appear to be derived from an unreduced gamete of ‘Golden Delicious.’ Another apple genotype ‘Maçā Acida’ could be a sibling of the ‘Maçā Pêra’ clonal group. Other tested standard apples from the US genebank were unrelated to Terceira genotypes. Of the seven heritage pears, five unique genotypes and one pair of synonyms were detected. ‘Pêra Papo Pintassilgo’ from Raminho and ‘Pêra Vermelha’ from the nursery of Serviço de Desenvolvimento Agario da Terceira (SDAT) were synonyms. ‘Passans du Portugal’ was related to ‘Pêra Cabaca’ but other standard pears from the US genebank were unrelated to Terceira genotypes. Future studies will include additional apple and pear cultivars from other Islands of the Azores and continental Portugal, and wild Asian species to further explore genetic relationships.  相似文献   
99.
Salinity and sodicity effects on respiration and microbial biomass of soil   总被引:2,自引:2,他引:2  
An understanding of the effects of salinity and sodicity on soil carbon (C) stocks and fluxes is critical in environmental management, as the areal extents of salinity and sodicity are predicted to increase. The effects of salinity and sodicity on the soil microbial biomass (SMB) and soil respiration were assessed over 12weeks under controlled conditions by subjecting disturbed soil samples from a vegetated soil profile to leaching with one of six salt solutions; a combination of low-salinity (0.5dSm−1), mid-salinity (10dSm−1), or high-salinity (30dSm−1), with either low-sodicity (sodium adsorption ratio, SAR, 1), or high-sodicity (SAR 30) to give six treatments: control (low-salinity low-sodicity); low-salinity high-sodicity; mid-salinity low-sodicity; mid-salinity high-sodicity; high-salinity low-sodicity; and high-salinity high-sodicity. Soil respiration rate was highest (56–80mg CO2-C kg−1 soil) in the low-salinity treatments and lowest (1–5mg CO2-C kg−1 soil) in the mid-salinity treatments, while the SMB was highest in the high-salinity treatments (459–565mg kg−1 soil) and lowest in the low-salinity treatments (158–172mg kg−1 soil). This was attributed to increased substrate availability with high salt concentrations through either increased dispersion of soil aggregates or dissolution or hydrolysis of soil organic matter, which may offset some of the stresses placed on the microbial population from high salt concentrations. The apparent disparity in trends in respiration and the SMB may be due to an induced shift in the microbial population, from one dominated by more active microorganisms to one dominated by less active microorganisms.  相似文献   
100.
The effects of organic manure, mineral fertilizer (NPK), and P-deficiency fertilization (NK) on the individual biomass of young wheat plants, arbuscular mycorrhizal (AM) colonization in wheat root systems, population sizes of soil organic phosphorus mineralizing bacteria (OPMB) and inorganic phosphate solubilizing bacteria (IPSB) as well as soil P-mineralization and -solubilization potential were investigated in a long-term (18-year) fertilizer experiment. The experiment included five treatments: organic manure, an equal mixture of organic manure and mineral fertilizer, fertilizer NPK, fertilizer NK, and the control (without fertilization). Plant biomass, population sizes of soil OPMB and IPSB were greatly increased (P<0.05) by the application of organic manure and slightly increased by the balanced application of mineral fertilizer, while undiminished AM colonization in wheat root system was only observed in the case of the NK treatment. Compared to balanced fertilization, P-deficiency fertilization resulted in a significant increase (P<0.05) of OPMB-specific mineralization potential (soil P-mineralization potential per OPMB cell) and highest IPSB-specific solubilization potential (soil P-solubilization potential per IPSB cell), suggesting that OPMB and IPSB are likely more metabolically active in P-deficiency fertilized soils after long-term fertilizer management, and mycorrhizal plants are more dependent on AM in P-poor soils than in P-fertilized soils. Our results also showed the different effects of mineral fertilizer versus organic manure on soil P-mineralization and -solubilization potentials, as well as specific potentials of OPMB and IPSB in arable soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号