首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   21篇
林业   2篇
农学   5篇
基础科学   2篇
  26篇
综合类   5篇
农作物   6篇
水产渔业   41篇
畜牧兽医   98篇
园艺   1篇
植物保护   1篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   4篇
  2018年   7篇
  2017年   10篇
  2016年   9篇
  2015年   10篇
  2014年   7篇
  2013年   14篇
  2012年   5篇
  2011年   5篇
  2010年   7篇
  2009年   7篇
  2008年   6篇
  2007年   9篇
  2005年   1篇
  2004年   4篇
  2003年   4篇
  2002年   1篇
  2001年   3篇
  1999年   5篇
  1998年   1篇
  1994年   3篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1985年   2篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1979年   2篇
  1977年   1篇
  1975年   2篇
  1974年   3篇
  1972年   2篇
  1971年   3篇
  1970年   10篇
  1969年   4篇
  1968年   4篇
  1966年   4篇
  1965年   1篇
排序方式: 共有187条查询结果,搜索用时 46 毫秒
61.
Intracellular antigens of strain DN-599 bovine herpesvirus were detected in the cytoplasm and the nucleus of infected bovine embryonic kidney cells by the indirect immunoferritin (IF) technique. Specific tagging was observed in viral envelope and capsids. Aggregates of viral particles heavily coated with antibody were seen by immune electron microscopy (IEM).  相似文献   
62.
63.
64.
65.
 Application of a commercial formulation of the herbicide butachlor (N-butoxymethyl-2-chloro-2′,6′-diethyl acetanilide) at 1 kg a.i. ha–1 to an alluvial soil planted with direct-seeded flooded rice (cv. Annada), significantly inhibited both crop-mediated emission and ebullition fluxes of methane (CH4). Over a cropping period of 110 days, the crop-mediated cumulative emission flux of CH4 was lowered by ∼20% in butachlor-treated field plots compared with that of an untreated control. Concurrently, ebollition flux of CH4 was also retarded in butachlor-treated field plots by about 81% compared with that of control plots. Significant relationships existed between CH4 emission and redox potential (E h) and Fe2+ content of the flooded soil. Application of butachlor retarded a drop in soil redox potential as well as accumulation of Fe2+ in treated field plots. Methanogenic bacterial population, counted at the maturity stage of the crop, was also low in butachlor-treated plots, indicating both direct and indirect inhibitory effects of butachlor on methanogenic bacterial populations and their activity. Results indicate that butachlor, even at field-application level, can effectively abate CH4 emission and ebollition from flooded soils planted to rice whilst maintaining grain yield. Received: 15 March 2000  相似文献   
66.
In Vertisols of central India erratic rainfall and prevalence of drought during crop growth, low infiltration rates and the consequent ponding of water at the surface during the critical growth stages are suggested as possible reasons responsible for poor yields (<1 t ha−1) of soybean (Glycine max (L.) Merr.). Ameliorative tillage practices particularly deep tillage (subsoiling with chisel plough) can improve the water storage of soil by facilitating infiltration, which may help in minimizing water stress in this type of soil. In a 3-year field experiment (2000–2002) carried out in a Vertisol during wet seasons at Bhopal, Madhya Pradesh, India, we determined infiltration rate, root length and mass densities, water use efficiency and productivity of rainfed soybean under three tillage treatments consisting of conventional tillage (two tillage by sweep cultivator for topsoil tillage) (S1), conventional tillage + subsoiling in alternate years using chisel plough (S2), and conventional tillage + subsoiling in every year (S3) as main plot. The subplot consisted of three nutrient treatments, viz., 0% NPK (N0), 100% NPK (N1) and 100% NPK + farmyard manure (FYM) at 4 t ha−1 (N2). S3 registered a significantly lower soil penetration resistance by 22%, 28% and 20%, respectively, at the 17.5, 24.5 and 31.5 cm depths over S1 and the corresponding decrease over S2 were 17%, 19% and 13%, respectively. Bulk density after 15 days of tillage operation was significantly low in subsurface (15–30 cm depth) in S3 (1.39 mg m−3) followed by S2 (1.41 mg m−3) and S1 (1.58 mg m−3). Root length density (RLD) and root mass density (RMD) of soybean at 0–15 cm soil depth were greater following subsoiling in every year. S3 recorded significantly greater RLD (1.04 cm cm−3) over S2 (0.92 cm cm−3) and S1 (0.65 cm cm−3) at 15–30 cm depth under this study. The basic infiltration rate was greater after subsoiling in every year (5.65 cm h−1) in relation to conventional tillage (1.84 cm h−1). Similar trend was also observed in water storage characteristics (0–90 cm depth) of the soil profile. The faster infiltration rate and water storage of the profile facilitated higher grain yield and enhanced water use efficiency for soybean under subsoiling than conventional tillage. S3 registered significantly higher water use efficiency (17 kg ha−1 cm−1) over S2 (16 kg ha−1 cm−1) and S1 (14 kg ha−1 cm−1). On an average subsoiling recorded 20% higher grain yield of soybean over conventional tillage but the yield did not vary significantly due to S3 and S2. Combined application of 100% NPK and 4 t farmyard manure (FYM) ha−1 in N2 resulted in a larger RLD, RMD, grain yield and water use efficiency than N1 or the control (N0). N2 registered significantly higher yield of soybean (1517 kg ha−1) over purely inorganic (N1) (1392 kg ha−1) and control (N0) (898 kg ha−1). The study indicated that in Vertisols, enhanced productivity of soybean can be achieved by subsoiling in alternate years and integrated with the use of 100% NPK (30 kg N, 26 kg P and 25 kg K) and 4 t FYM ha−1.  相似文献   
67.
68.
The trace elemental analysis of two species of mud crab and three species of prawn samples from Chilika lagoon, Orissa, India has been carried out by using Energy Dispersive X-ray Fluorescence (EDXRF) technique available at Institute of Physics, Bhubaneswar. Elements namely K, Ca, Mn, Fe, Cu, Zn, Se, Br, Sr and Pb have been measured in the present investigation. The study indicates the effectiveness of the technique in analyzing biological materials like tissue samples and opens a door for easy analysis of seafood items with a easy, fast, sensitive, simultaneous multi-elemental technique with a simple sample preparation procedure without any chemical treatment. Though all the specimens were collected from the same environment of the lagoon the elemental variation might be due to the differential migration pattern and metabolism or other biological factors.  相似文献   
69.

Purpose

The balance of micronutrients in soils is important in nutrient use efficiency, environmental protection and the sustainability of agro-ecological systems. The deficiency or excess of micronutrients in the plough layer may decrease crop yield and/or quality. Therefore, it is essential to maintain appropriate levels of micronutrients in soil, not only for satisfying plant needs in order to sustain agricultural production but also for preventing any potential build-up of certain nutrients.

Materials and methods

A long-term fertilizer experiment started in 1969 at Central Rice Research Institute, Cuttack, Odisha, India. Using this experiment, a study was conducted to analyze the balance of micronutrients and their interrelationship. The experiment was composed of ten nutrient management treatments viz. control; nitrogen (N); N + phosphorus (NP); N + potassium (NK); nitrogen, phosphorus and potassium (NPK); farmyard manure (FYM); N + FYM; NP + FYM; NK + FYM; and NPK + FYM with three replications. Micronutrients in soil (total and available), added fertilizers and organic manures and in rice plant were analyzed. Besides, atmospheric deposition of the micronutrients to the experimental site was also calculated. A micronutrient balance sheet was prepared by the difference between output and input of total micronutrients.

Results and discussion

Application of FYM alone or in combination with chemical fertilizer increased the diethylenetriamine pentaacetate (DTPA)-extractable Fe, Mn and Zn over the control treatment. The treatment with NPK + FYM had the highest soil DTPA-extractable Fe, Mn, Zn and Cu after 41 years of cropping and fertilization. Application of chemical fertilizers without P decreased the DTPA-extractable Zn over the control while the inclusion of P in the fertilizer treatments maintained it on a par with the control. The application of P fertilizer and FYM either alone or in combination significantly increased the contents of total Fe, Mn, Zn and Cu in soil mainly due to their micronutrient content and atmospheric depositions. A negative balance of Zn was observed in the N, NP, NK and NPK treatments, while a positive balance observed in the remaining treatments. The balance of Mn was negative in all the treatments, due to higher uptake by the rice crop than its addition.

Conclusions

Long-term application of chemical fertilizers together with FYM maintained the availability of micronutrients in soil and, thus, their uptake by rice crop.
  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号