Rodents are sources of many zoonotic pathogens that are of public health concern. This study investigated bacterial pathogens and assessed their antimicrobial resistance (AMR) patterns in commensal rodents in Qatar. A total of 148 rodents were captured between August 2019 and February 2020, and blood, ectoparasites, and visceral samples were collected. Gram-negative bacteria were isolated from the intestines, and blood plasma samples were used to detect antibodies against Brucella spp., Chlamydophila abortus, and Coxiella burnetii. PCR assays were performed to detect C. burnetii, Leptospira spp., Rickettsia spp., and Yersinia pestis in rodent tissues and ectoparasite samples. Antimicrobial resistance by the isolated intestinal bacteria was performed using an automated VITEK analyzer. A total of 13 bacterial species were isolated from the intestine samples, namely Acinetobacter baumannii, Aeromonas salmonicida, Citrobacter freundii, Citrobacter koseri, Enterobacter aerogenes, Enterobacter cloacae, Escherichia coli, Hafnia alvei, Klebsiella pneumoniae, Providencia stuartii, Proteus mirabilis, Pseudomonas aeruginosa, and Salmonella enterica. The majority of them were E. coli (54.63%), followed by P. mirabilis (17.59%) and K. pneumoniae (8.33%). Most of the pathogens were isolated from rodents obtained from livestock farms (50.46%), followed by agricultural farms (26.61%) and other sources (22.94%). No antibodies (0/148) were detected against Brucella spp., C. abortus, or C. burnetii. In addition, 31.58% (6/19) of the flea pools and one (1/1) mite pool was positive for Rickettsia spp., and no sample was positive for C. burnetii, Leptospira spp., and Y. pestis by PCR. A total of 43 (38%) bacterial isolates were identified as multidrug resistant (MDR), whereas A. salmonicida (n?=?1) did not show resistance to any tested antimicrobials. Over 50% of bacterial MDR isolates were resistant to ampicillin, cefalotin, doxycycline, nitrofurantoin, and tetracycline. The presence of MDR pathogens was not correlated with rodent species or the location of rodent trapping. Seven (11.86%) E. coli and 2 (22.2%) K. pneumoniae were extended-spectrum beta-lactamases (ESBL) producers. These findings suggest that rodents can be a source of opportunistic bacteria for human and animal transmission in Qatar. Further studies are needed for the molecular characterization of the identified bacteria in this study.
Five novel permanent cell lines have been established from gill, heart, kidney, eye and fin of snubnose pompano, Trachinotus blochii. They were designated as snubnose pompano gill (SPG), snubnose pompano heart (SPH), snubnose pompano kidney (SPK), snubnose pompano eye (SPE) and snubnose pompano fin (SPF), respectively. All these cell lines were characterized and cryopreserved successfully at different passage levels. Cell lines were passaged every alternate day; SPG, SPH, SPK, SPE and SPF cell lines attained passage levels of 68, 74, 82, 79 and 106, respectively, since the initiation of their development in 2019. The cell lines grew well in Leibovitz's 15 medium containing 15% foetal bovine serum at 28°C. Immunophenotyping of the cell lines revealed the presence of fibronectin and pancytokeratin. No mycoplasma contamination was found. The transfection study revealed the gene expression efficiency of these cell lines by expressing the green fluorescent protein (GFP). The authentication on origin of cell lines from T. blochii was confirmed by amplification of species-specific mitochondrial cytochrome oxidase I gene. The results showed the susceptibility of these cell lines to fish nodavirus (FNV) and tilapia lake virus (TiLV) and resistance to cyprinid herpesvirus 2 (CyHV-2). The FNV infection in the cell lines was confirmed by RT-PCR, Western blot, ELISA and immunocytochemistry, while TiLV infection was confirmed by RT-PCR assay. These results revealed that these cell lines are suitable for virological and foreign gene expression studies. 相似文献
Chickpea (Cicer arietinum L.), is an important grain legume crop throughout the world especially in developing countries. However the average yield worldwide is considered to be lower than its potential yield (Singh et al., 1994). The average yield of chickpea is much lower in Pakistan, which is about 5500-650 kg/hm^2 due to various abiotic and biotic stresses (Shah et al., 2005). 相似文献
To assess the drainable surplus of an irrigated area, a methodologybased on a groundwater-balance approach was developed and appliedin Schedule I-B of the Fourth Drainage Project near Faisalabad inPakistan. To determine the seasonal net recharge in this area, anumerical groundwater model was run in inverse mode. The data inputfor the model consisted of the geometry of the aquifer system, theaquifer parameters, and historical watertable elevations. The seasonalnet recharge values, calculated from the individual recharge anddischarge components, were tuned with the results of the inversemodelling. The advantage of such an integrated approach is that allthese components are linked. The design net recharge was estimatedfrom the historical net recharge of the wettest monsoon in the studyperiod. Its rainfall recharge values were then substituted for those of adesign monsoon. In this substitution procedure, the rainfall rechargemethodology and parameters were adopted from the tuning procedure.From this design net recharge, estimates could be made of the requireddrainable surplus, with and without drainage simulation. 相似文献
Cotton (Gossypium hirsutum L.) is a well-known and economically most beneficial crop worldwide while nickel (Ni) toxicity is a widespread problem in crops grown on Ni-contaminated soils. We investigated the response of silicon (Si) in cotton under Ni stress with respect to growth, biomass, gas exchange attributes, enzymatic activities, and Ni uptake and accumulation. For this, plants were grown in hydroponics for 12 weeks with three levels of Ni (0, 50, and 100 µM) in the presence or absence of 1 mM Si. Results showed that Ni significantly reduced the plant growth, biomass, gas exchange attributes, and pigment contents while Si application mitigated these adverse effects under Ni stress. Nickel stress significantly decreased antioxidant enzymes’ activities while increased malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolyte leakage (EC) in leaves and roots. The application of Si enhanced the activities of antioxidant enzymes and reduced MDA, H2O2, and EC in plants. Nickel application significantly increased Ni concentration and accumulation in leaf, stem, and roots while Si application significantly decreased Ni in these plant parts. The present study indicates that Si could improve cotton growth under Ni stress by lowering Ni uptake and reactive oxygen species (ROS) and by increasing antioxidant enzymes activities. 相似文献
AbstractField trials were performed to investigate the effects of humic acid (HA) and multinutrient foliar fertilizer “Micro Power” (MP) coupled with farmer’s practices ( FP ), addressed in single and/or split dose frames at different plant phenological stages on various vegetative, reproductive, and physiological attributes of citrus trees (Citrus reticulata cv. kinnow mandarin). The results exhibited a profound response of treatments on various growth parameters (32.5% increase in plant height, 22.2% increase in fruit set branch?1, 5.25% decrease in fruit drop percentage, 89.81% increase in fruit yield (kg), etc.) of citrus trees when compared to the control (FP). Likewise, a significant positive response was observed regarding various plant physiological parameters (leaf nutrients, total chlorophyll content, etc.) and physicochemical characteristics (ascorbic acid, total sugars, etc.) of citrus fruits. This study confirmed the reproducibility of HA and MP applications to improve the yield/quality of citrus and can lead to an organically sustainable citriculture. 相似文献
Fish nodavirus (betanodavirus), a viral pathogen responsible for viral nervous necrosis (VNN) was isolated from infected Asian sea bass (Lates calcarifer). The distribution, clearance and expression of nodavirus vaccine, on the basis of DNA vaccine (pFNCPE42 DNA‐pcDNA3.1) construction, were analysed in tissues of the Asian seabass by PCR, RT‐PCR, ELISA and Immunohistochemistry. Fish immunized with a single intramuscular injection of 20 μg of the pFNCPE42‐DNA vaccine showed a significant increase in the serum antibody level in the 3rd week after vaccination, compared to control eukaryotic expression vector pcDNA3.1 vaccinated fish. Results from PCR studies indicated that the vaccine‐containing plasmids were distributed in heart, intestine, gill, muscle and liver 10 days after vaccination. Clearance of pFNCPE42‐DNA vaccine was studied at 10, 25, 50, 75 and 100 days of post vaccination (d p.v). At 100 days p.v. pFNCPE42‐DNA was cleared from muscle of vaccinated sea bass. In vitro and in vivo expression of fish nodavirus capsid protein gene (FNCP) was determined by fluorescent microscopy. Asian seabass was immunized with pFNCPE42‐DNA vaccine at a dose of 20 μg per fish and were challenged with betanodavirus by intramuscular injection. The vaccinated seabass was protected from nodaviral infection and 77.33% of relative percent survival (RPS) was recorded. 相似文献