首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64143篇
  免费   2987篇
  国内免费   44篇
林业   2598篇
农学   1685篇
基础科学   442篇
  6396篇
综合类   15044篇
农作物   2532篇
水产渔业   2569篇
畜牧兽医   31686篇
园艺   680篇
植物保护   3542篇
  2018年   574篇
  2017年   586篇
  2016年   582篇
  2014年   593篇
  2013年   1919篇
  2012年   1298篇
  2011年   1563篇
  2010年   978篇
  2009年   949篇
  2008年   1533篇
  2007年   1520篇
  2006年   1492篇
  2005年   1496篇
  2004年   1418篇
  2003年   1487篇
  2002年   1445篇
  2001年   1505篇
  2000年   1487篇
  1999年   1222篇
  1997年   553篇
  1995年   606篇
  1994年   583篇
  1993年   573篇
  1992年   1314篇
  1991年   1411篇
  1990年   1454篇
  1989年   1493篇
  1988年   1408篇
  1987年   1365篇
  1986年   1410篇
  1985年   1376篇
  1984年   1156篇
  1983年   1007篇
  1982年   719篇
  1981年   690篇
  1980年   648篇
  1979年   1130篇
  1978年   919篇
  1977年   821篇
  1976年   770篇
  1975年   861篇
  1974年   1129篇
  1973年   1064篇
  1972年   1130篇
  1971年   1084篇
  1970年   1024篇
  1969年   879篇
  1968年   710篇
  1967年   845篇
  1966年   694篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
Summary Dry-seeded rice (Oryza sativa L., cv. Calrose) was subjected to 4 irrigation treatments — continuous flood (CF) and sprinkler irrigation at frequencies of one (S1 W), two (S2W) and three (S3W) applications per week — commencing 37 d after 50% emergence (DAE). The amount of water applied was calculated to replace water lost by pan evaporation. Urea (120 kg N ha–1) was applied in a 1:1 split 36 and 84 DAE, and there were also unfertilized controls for each irrigation treatment. Amounts of nitrate (NO 3 ) in the soil were very low throughout the growing season in all treatments, despite regular periods of draining which lasted for up to 7 d in SlW. In all irrigation treatments, the majority of the fertilizer nitrogen (N) was located in the top 20 mm of soil. After each application of fertilizer, levels of mineral N in CF declined rapidly, while levels in S3W and S1W remained high for 1–2 weeks longer. The poor growth of sprinkler-irrigated rice was not due to lower amounts of mineral N in the soil. The greater persistence of fertilizer N in the sprinkler-irrigated treatments was probably due to reduced root activity near the soil surface because of frequent periods of soil drying in between irrigations. Net mineralization of soil N in the unfertilized sprinkler-irrigated treatments was reduced by about half compared with CF.On average, the quantity of water applied (1.2–1.4 × EP) to the sprinkler-irrigated treatments appeared to be sufficient to meet the evapotranspiration demands of the crop, except possibly around flowering time. However, the plants may have suffered from moisture stress in between irrigations. Soil matric potential data at 100 mm suggested little water stress in the sprinkler-irrigated treatments during the vegetative stage, consistent with the similar tiller and panicle densities in all irrigation treatments. However, the crop was stunted and yellow and leaf rolling was observed in the sprinkler-irrigated treatments during this period. Soil matric potential data at 100 mm indicated considerable water stress in S1W beyond the commencement of anthesis, and in S2W during grain filling, consistent with the reduced floret fertility and grain weight in those treatments.  相似文献   
942.
Crop water requirements for rainfed and irrigated grain corn in China   总被引:1,自引:0,他引:1  
A basic parametric crop water use model (WATER) that employes climatic and environmental data to calculate temporal and spatial water consumption for a variety of major corps was applied specifically for grain corn to the region of China and Korea to investigate the evapotranspiration (ET) demand on grain corn and the associated irrigation water applications necessary for optimal crop production. A network of 241 stations provided the seasonal climatic input. The climatic input consisted of data averaged over approximately a 20 year period. Among the results, highest ET under full irrigation (first harvest) occurred in the northwestern inland sections of China, whereas least ET was found for the southeast. Under rainfed conditions, the relationship became nearly inverse. In order to achieve optimum crop yields, about 1000 mm of irrigation water was needed in the northwest, contrasted with none required in the south and east of China. A sensitivity analysis was applied to determine the degree of error introduced by faulty or uncertain environmental input data.  相似文献   
943.
Summary Salinity, a common environmental constraint in arid and semiarid regions, causes substantial reduction in yield and nitrogen fixation in sensitive edible seed legumes. Greenhouse experiments were designed to determine whether irrigation and fertilizer supplements could reduce the adverse effects of soluble salts on yield and nitrogen fixation in a sensitive seed legume. Snapbeans, Phaseolus vulgaris L. cv Early Gallatin, inoculated with Rhizobium phaseoli L., were given 3 levels of irrigation salinity, 3 frequencies of irrigation and 2 N levels, and 3 P levels, on a P-deficient Argixeroll. Yield components, percent plant N, and acetylene reduction were reduced significantly as salinity and the interval between water applications increased. Fertilizer application had no effect on any plant component. Two- and three-way interactions confirmed the strong effects of the individual variables of salinity and irrigation frequency. Increasing irrigation frequency increased yield at all of the water salinities studied. Application of N, P, K fertilizers helped maintain yields at low to moderate levels of soil salinity, but not at high salt levels. Snap-bean plants harvested at seed maturity, however, did not show a significantly substantial benefit of fertilizer for Rhizobium in the stressed rhizosphere.  相似文献   
944.
Land retirement is ceasing irrigation withthe goal of reducing load, in general, ofdissolved constituents and, in particular,of trace elements, present in subsurfacedrainage generated from irrigated lands. Retirement is achieved through a process ofgoal setting, strategy development anddetermining effects, developing landselection criteria, implementation, andmonitoring. In this study, effects of landretirement are evaluated using hydrologic,soil and economic models as well as resultsfrom a field demonstration study. From themodeling and field monitoring, a process isdeveloped to meet the goals of a landretirement program in the San JoaquinValley of California.Potential negative effects listed for landretirement included loss of agriculturalproductivity, perhaps permanently, and lossof revenue to surrounding communities. Uncertainties included those associatedwith reuse of retired lands as wildlifehabitat, with retired-land maintenanceincluding dust control, with potentialpreservation of retired lands in reservefor future re-introduction to irrigated ordry-land agriculture, and withinstitutional changes concerning repaymentof federal and state water contracts. Benefits would accrue from economic returnto the landowner from the sale of property,the sale or lease of irrigation watersupply, the reduced cost of handlingdrainage, and allocation of freed-up waterto beneficial uses, and the reduced risk ofselenium exposure to fish and wildlife.A recommended sequential approach to selectand manage retired land is to identifyprimary objectives; formulate and implementarea-specific land retirement scenarios;measure biologic, hydrologic, soils andeconomic consequences in the short term andthe long term and manage and monitorretired lands based on dynamic biologic,hydrologic and soil conditions.  相似文献   
945.
Cover cropping is a common agro-environmental tool for soil and groundwater protection. In water limited environments, knowledge about additional water extraction by cover crop plants compared to a bare soil is required for a sustainable management strategy. Estimates obtained by the FAO dual crop coefficient method, compared to water balance-based data of actual evapotranspiration, were used to assess the risk of soil water depletion by four cover crop species (phacelia, hairy vetch, rye, mustard) compared to a fallow control. A water stress compensation function was developed for this model to account for additional water uptake from deeper soil layers under dry conditions. The average deviation of modelled cumulative evapotranspiration from the measured values was 1.4% under wet conditions in 2004 and 6.7% under dry conditions in 2005. Water stress compensation was suggested for rye and mustard, improving substantially the model estimates. Dry conditions during full cover crop growth resulted in water losses exceeding fallow by a maximum of +15.8% for rye, while no substantially higher water losses to the atmosphere were found in case of evenly distributed rainfall during the plant vegetation period with evaporation and transpiration concentrated in the upper soil layer. Generally the potential of cover crop induced water storage depletion was limited due to the low evaporative demand when plants achieved maximum growth. These results in a transpiration efficiency being highest for phacelia (5.1 g m−2 mm−1) and vetch (5.4 g m−2 mm−1) and substantially lower for rye (2.9 g m−2 mm−1) and mustard (2.8 g m−2 mm−1). Taking into account total evapotranspiration losses, mustard performed substantially better. The integration of stress compensation into the FAO crop coefficient approach provided reliable estimates of water losses under dry conditions. Cover crop species reducing the high evaporation potential from a bare soil surface in late summer by a fast canopy coverage during early development stages were considered most suitable in a sustainable cover crop management for water limited environments.  相似文献   
946.
Recent community based actions to ensure the sustainability of irrigation and protection of associated ecosystems in the Murrumbidgee Irrigation Area (MIA) of Australia has seen the implementation of a regional Land and Water Management Plan. This aims to improve land and water management within the irrigation area and minimise downstream impacts associated with irrigation. One of the plan objectives is to decrease current salt loads generated from subsurface drainage in perennial horticulture within the area from 20 000 tonnes/year to 17 000 tonnes/year. In order to meet such objectives Controlled Water table Management (CWM) is being investigated as a possible ‘Best Management Practice’, to reduce drainage volumes and salt loads.During 2000–2002 a trial was conducted on a 15 ha subsurface drained vineyard. This compared a traditional unmanaged subsurface drainage system with a controlled drainage system utilizing weirs to maintain water tables and changes in irrigation scheduling to maximize the potential crop use of a shallow water table. Drainage volumes, salt loads and water table elevations throughout the field were monitored to investigate the effects of controlled drainage on drain flows and salt loads.Results from the experiment showed that controlled drainage significantly reduced drainage volumes and salt loads compared to unmanaged systems. However, there were marked increases in soil salinity which will need to be carefully monitored and managed.  相似文献   
947.
948.
Irrigation and food security in the 21st century   总被引:1,自引:0,他引:1  
Global food projections indicate that food prices in the next threedecades will likely be stable or decline, but progress inreducing malnutrition in developing countries will be slow. Smallshortfalls in crop productivity growth would lead to rising foodprices and worsening malnutrition. Increased food production fromirrigation is essential, and will require expansion of irrigatedarea and water supplies, and improved efficiency of use of existingwater supplies. Neither of these growth factors will prove easy, andboth will require complex institutional and policy reforms. Failureto meet food production needs through efficient expansion andintensification of irrigated agriculture would increase pressure onland resources and hasten the process of environmental degradation.Irrigation and water development strategies have been hampered bya lack of understanding of the links between water scarcity, foodproduction, food security, and environmental sustainability.Research to improve this understanding would have high payoffs.  相似文献   
949.
The success of water management in large irrigation schemes with composites of soil, crop, wetness and micro-meteorological conditions is difficult to quantify. Performance assessment indicators, being among others a function of evaporation, are useful tools to evaluate the actual functioning of an irrigation system. The inevitable spatial variability of evaporation in large irrigation schemes makes its determination with conventional point measurements almost impossible. A new remote sensing evaporation parameterization algorithm has been tested with high resolution Landsat Thematic Mapper data for the Eastern Nile Delta, Egypt. Although the implementation of such an algorithm requires assumptions to be made, the current case study shows that these assumptions do not hamper the estimation of actual and potential evaporation at regional scale. The actual evaporation has been used to express the uniformity of crop water use which is related to the equity of irrigation water distribution. The coefficient of variance in actual evaporation between 53 differenent irrigation districts is 10% on average. The relative evaporation was considered to determine whether the crop was adequately irrigated. The relative evaporation was more than 75% for 48 out of 53 irrigation districts. It is concluded, that improved information on actual crop growth conditions through remote sensing provides an essential insight into the planning of real-time and seasonal irrigation water deliveries.  相似文献   
950.
This study was conducted on Gugera Branch of Lower Chenab Canal, Punjab, Pakistan. Sample distributaries off taking from Gugera Branch were selected for the study. The existing conditions of water distribution among the distributaries were studied. Field data were collected during the whole of 1988. Field observations suggested that the variability at the head of distributaries is much greater than the variability in the Gugera Branch under existing operational practices. The distribution of water among the distributaries is rarely in accordance with design criteria. Some channels get priority over other channels. The annual closure period varied from 17 to 41 days for different channels. The discharge at the head of distributaries remained lower than the standard operational range for 69 to 183 days in a year. The data suggested that a regulating gate at the head of the distributary can reduce discharge variation up to 2.4 times compared with a Karrees System (wooden stop logs used for water regulation). The data indicated that the adjustments in the head gate of a distributary on daily basis can substantially improve discharge conditions at the head of distributary. Rotational schedules are not being followed as per design and need to be improved. Most of the existing head discharge relationships of discharge measuring structures are not reliable. A frequent calibration of these structures is recommended.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号