首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1198篇
  免费   81篇
林业   29篇
农学   36篇
基础科学   5篇
  104篇
综合类   185篇
农作物   42篇
水产渔业   55篇
畜牧兽医   745篇
园艺   15篇
植物保护   63篇
  2023年   8篇
  2022年   7篇
  2021年   10篇
  2020年   19篇
  2019年   25篇
  2018年   16篇
  2017年   13篇
  2016年   25篇
  2015年   11篇
  2014年   15篇
  2013年   45篇
  2012年   30篇
  2011年   61篇
  2010年   45篇
  2009年   37篇
  2008年   43篇
  2007年   74篇
  2006年   71篇
  2005年   78篇
  2004年   66篇
  2003年   55篇
  2002年   63篇
  2001年   27篇
  2000年   22篇
  1999年   25篇
  1998年   19篇
  1997年   14篇
  1996年   12篇
  1995年   13篇
  1994年   9篇
  1993年   9篇
  1992年   25篇
  1991年   22篇
  1990年   16篇
  1989年   20篇
  1988年   13篇
  1987年   16篇
  1986年   11篇
  1985年   18篇
  1984年   6篇
  1983年   7篇
  1980年   6篇
  1979年   11篇
  1977年   9篇
  1976年   6篇
  1973年   7篇
  1972年   6篇
  1971年   10篇
  1970年   6篇
  1969年   5篇
排序方式: 共有1279条查询结果,搜索用时 15 毫秒
11.
12.
The dimorphic fungi Coccidioides immitis and Coccidioides posadasii are the causative agents of coccidioidomycosis. Dogs and cats residing in and visiting endemic areas are at risk of exposure to infectious arthrospores. The primary infection is pulmonary and frequently results in chronic cough. Disseminated disease is common and causes cutaneous, osseous, cardiac, ocular, nervous system, or other organ disease. Radiographic changes include a variable degree of interstitial pulmonary infiltration, hilar lymphadenopathy, and osseous lesions. Serological titers support the diagnosis, but definitive diagnosis relies on identification of Coccidioides in cytological or tissue samples. Coccidioidomycosis should be considered in any dog or cat that has been potentially exposed during the previous 3 years and is presented with chronic illness, respiratory signs, lameness, lymphadenopathy, nonhealing cutaneous lesions, or neurological, ocular, or cardiac abnormalities.  相似文献   
13.
14.
15.
16.
Trichoderma (T. asperellum-203, 44 and GH11; T. atroviride-IMI 206040 and T. harzianum-248) parasitism on Meloidogyne javanica life stages was examined in vitro. Conidium attachment and parasitism differed beween the fungi. Egg masses, their derived eggs and second-stage juveniles (J2) were parasitized by Trichoderma asperellum-203, 44, and T. atroviride following conidium attachment. Trichoderma asperellum-GH11 attached to the nematodes but exhibited reduced penetration, whereas growth of T. harzianum-248 attached to egg masses was inhibited. Only a few conidia of the different fungi were attached to eggs and J2s without gelatinous matrix; the eggs were penetrated and parasitized by few hyphae, while J2s were rarely parasitized by the fungi. The gelatinous matrix specifically induced J2 immobilization by T. asperellum-203, 44 and T. atroviride metabolites that immobilized the J2s. A constitutive-GFP-expressing T. asperellum-203 construct was used to visualize fungal penetration of the nematodes. Scanning electron microscopy revealed the formation of coiling and appressorium-like structures upon attachment and parasitism by T. asperellum-203 and T. atroviride. Gelatinous matrix agglutinated T. asperellum-203 and T. atroviride conidia, a process that was Ca2+-dependent. Conidium agglutination was inhibited by carbohydrates, including fucose, as was conidium attachment to the nematodes. All but T. harzianum could grow on the gelatinous matrix, which enhanced conidium germination. A biomimetic system based on gelatinous-matrix-coated nylon fibers demonstrated the role of the matrix in parasitism: T. asperellum-203 and T. atroviride conidia attached specifically to the gelatinous-matrix-coated fibers and parasitic growth patterns, such as coiling, branching and appressoria-like structures, were induced in both fungi, similarly to those observed during nematode parasitism. All Trichoderma isolates exhibited nematode biocontrol activity in pot experiments with tomato plants. Parasitic interactions were demonstrated in planta: females and egg masses dissected from tomato roots grown in T. asperellum-203-treated soil were examined and found to be parasitized by the fungus. This study demonstrates biocontrol activities of Trichoderma isolates and their parasitic capabilities on M. javanica, elucidating the importance of the gelatinous matrix in the fungal parasitism.  相似文献   
17.
A stolbur‐type phytoplasma is the putative pathogen of grapevine yellows disease that causes economic damage to vineyards in most growing areas around the world. The pathogen is known to be transmitted to vines by two planthoppers, Hyalesthes obsoletus and Reptalus panzer; the latter is found in Europe but has not yet been observed in Israel. The establishment of a vector–pathogen–plant relationship requires that the pathogen and the vector meet on a shared host plant. This does not happen in the ecosystem examined here, where two different principal host plants for the obligate pathogen and its vector exist: the pathogen is established on vines, while its vector, H. obsoletus, develops on Vitex agnus‐castus. The present study verified that: (i) the vector cannot complete its life cycle on vines; (ii) V. agnus‐castus does not grow in the immediate vicinity of vines, and does not harbour the pathogen; and (iii) the pathogen is not vertically transmitted from mother to offspring. Moreover, in a thorough search of plants in vine growing areas, no other plants were found that host both the vector and the pathogen. However, it was found that the planthopper can acquire the phytoplasma from infected vines. Nonetheless, this does not prove the ability of the planthopper to further transmit the pathogen to vines and does not explain the presence of the vector on the non‐preferred vines. Thus, the enigma of the pathogen–vector–host triangle in this system remains unresolved.  相似文献   
18.
19.
The impacts of a wildfire and subsequent rainfall event in 2013 in the Warrumbungle National Park in New South Wales, Australia were examined in a project designed to provide information on post‐fire recovery expectations and options to land managers. A coherent suite of sub‐projects was implemented, including soil mapping, and studies on soil organic carbon (SOC) and nitrogen (N), erosion rates, groundcover recovery and stream responses. It was found that the loss of SOC and N increased with fire severity, with the greatest losses from severely burnt sandstone ridges. Approximately 2.4 million t of SOC and ~74,000 t of N were lost from soil to a depth of 10 cm across the 56,290 ha affected. Soil loss from slopes during the subsequent rainfall event was modelled up to 25 t ha?1, compared to a long‐term mean annual soil loss of 1.06 t ha?1 year?1. Groundcover averages generally increased after the fire until spring 2015, by which time rates of soil loss returned to near pre‐fire levels. Streams were filled with sand to bank full levels after the fire and rainfall. Rainfall events in 2015–2016 shifted creek systems into a major erosive phase, with incision through the post‐fire sandy bedload deposits, an erosive phase likely related to loss of topsoils over much of the catchment. The effectiveness of the research was secured by a close engagement with park managers in issue identification and a communications programme. Management outcomes flowing from the research included installation of erosion control works, redesign of access and monitoring of key mass movement hazard areas.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号