首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   6篇
林业   39篇
农学   3篇
  39篇
综合类   5篇
农作物   6篇
水产渔业   5篇
畜牧兽医   25篇
园艺   9篇
植物保护   8篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   4篇
  2019年   6篇
  2018年   11篇
  2017年   8篇
  2016年   6篇
  2015年   2篇
  2014年   5篇
  2013年   4篇
  2012年   6篇
  2011年   9篇
  2010年   9篇
  2009年   7篇
  2008年   5篇
  2007年   5篇
  2006年   11篇
  2005年   7篇
  2004年   7篇
  2003年   4篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1998年   2篇
  1996年   2篇
  1995年   3篇
  1990年   1篇
  1988年   1篇
排序方式: 共有139条查询结果,搜索用时 531 毫秒
31.
The objective was to compare tree-level airborne laser-scanning (ALS) data accuracy with standwise estimation data accuracy as input data for forest planning, using tree- and stand-level simulators. The influence of the input data accuracy was studied with respect to (1) timing of the next thinning or clear-cutting and (2) the relative variation in the predicted income of the next logging expressed as the net present value (NPV). The timing and predicted NPV of thinning and clear-cutting operations were considered separately. The research was based on Monte Carlo simulations carried out with the tree- and stand-level simulators using a simulation and optimisation (SIMO) framework. The simulations used treewise measurements taken on 270 circular plots measured at the Evo Field Station, Finland, as input data. Deviations in the tree data measured were generated according to the mean standard errors found in standwise field estimation and tree-level ALS. The accuracy factors of ALS individual tree detection were based on the EUROSDR/ISPRS Tree Extraction Project. The results show that input data accuracy significantly affects both the timing and relative NPV of loggings. Tree-level ALS produces more accurate simulation results than standwise estimation with the error levels assumed. Diameter-based characteristics are the most important input data in all simulations. Accurate tree height estimates cannot be fully utilised in current simulators.  相似文献   
32.
Developments in the field of remote sensing have led to various cost-efficient forest inventory methods at different levels of detail. Remote-sensing techniques such as airborne laser scanning (ALS) and digital photogrammetry are becoming feasible alternatives for providing data for forest planning. Forest-planning systems are used to determine the future harvests and silvicultural operations. Input data errors affect the forest growth projections and these effects are dependent on the magnitude of the error. Our objective in this study was to determine how the errors typical to different inventory methods affect forest growth projections at individual stand level during a planning period of 30 years. Another objective was to examine how the errors in input data behave when different types of growth simulators are used. The inventory methods we compared in this study were stand-wise field inventory and single-tree ALS. To study the differences between growth models, we compared two forest simulators consisting of either distance-independent tree-level models or stand-level models. The data in this study covered a 2,000-ha forest area in southern Finland, including 240 sample plots with individually measured trees. The analysis was conducted with Monte Carlo simulations. The results show that the tree-level simulator is less sensitive to errors in the input data and that by using single-tree ALS data, more precise growth projections can be obtained than using stand-wise field inventory data.  相似文献   
33.
Application of 0.1 and 0.2 mM salicylic acid (SA) significantly reduced take-all disease caused by Gaeumannomyces graminis var. tritici (Ggt) and increased the root and shoot lengths and biomass, whereas 0.5 and 1 mM SA had no significant effect. The effective SA concentrations also increased the activities of soluble peroxidase (SPOX) and cell-wall-bound peroxidase (CWPOX) and the concentration of total phenolic compounds. SPOX activity was highest at days 4 and 3 in healthy roots and those inoculated with Ggt, respectively, and that of CWPOX at day 6 in both healthy and inoculated roots. The concentration of phenolic compound was also highest at day 3 in both healthy roots and those inoculated with Ggt. The results indicate that the protective effect of SA depends on certain concentrations which increase peroxidase activity and phenolic compounds accumulation in the wheat roots; higher SA concentrations did not differ from the controls.  相似文献   
34.
We examined effects of a first nitrogen (N) fertilizer application on upper-canopy needle morphology and gas exchange in approximately 20-m-tall loblolly pine (Pinus taeda L.) exposed to elevated carbon dioxide concentration ([CO(2)]) for 9 years. Duke Forest free-air CO(2) enrichment (FACE) plots were split and half of each ring fertilized with 112 kg ha(-1) elemental N applied in two applications in March and April 2005. Measurements of needle length (L), mass per unit area (LMA), N concentration (N(l)) on a mass and an area basis, light-saturated net photosynthesis per unit leaf area (A(a)) and per unit mass (A(m)), and leaf conductance (g(L)) began after the second fertilizer application in existing 1-year-old foliage (F(O)) and later in developing current-year first-flush (F(C1)) and current-year second-flush (F(C2)) foliage. Elevated [CO(2)] increased A(a) by 43 and 52% in F(O) and F(C1) foliage, respectively, but generally had no significant effect on any other parameter. Fertilization had little or no significant effect on L, LMA, A or g(L) in F(O) foliage; although N(l) was significantly higher in fertilized trees by midsummer. In contrast, fertilization resulted in large increases in L, N(l), and A in F(C1) and F(C2) foliage, increasing A(a) by about 20%. These results suggest that, although both needle age classes accumulate N following fertilization, they use it differently-current-year foliage incorporates N into photosynthetic machinery, whereas 1-year-old foliage serves as an N store. There were no significant interaction effects of elevated [CO(2)] and fertilization on A. Elevated [CO(2)] increased the intercept of the A:N(l) relationship but did not significantly affect the slope of the relationship in either foliage age class.  相似文献   
35.
36.
Effects of elevated concentrations of carbon dioxide ([CO2]) and ozone ([O3]) on photosynthesis and related biochemistry of two European silver birch (Betula pendula Roth) clones were studied under field conditions during 1999-2001. Seven-year-old trees of Clones 4 and 80 were exposed for 3 years to the following treatments in an open-top chamber experiment: outside control (OC), chamber control (CC), 2x ambient [CO2] (EC), 2x ambient [O3] (EO) and 2x ambient [CO2] + 2x ambient [O3] (EC+EO). During the experiment, gas exchange, chlorophyll fluorescence, amount and activity of Rubisco, concentrations of chlorophyll, soluble protein, soluble sugars, starch, nitrogen (N) and carbon:nitrogen (C:N) ratio were determined in short- and long-shoot leaves. Elevated [CO2] increased photosynthetic rate by around 30% when measurements were made at the growth [CO2]. When measured at ambient [CO2], photosynthesis was around 15% lower in EC trees than in CC trees. This was related to a approximately 10% decrease in total leaf N, to 26 and 20% decreases in the amount and activity of Rubisco, respectively, and to a 49% increase in starch concentration in elevated [CO2]. Elevated [O3] had no significant effect on gas exchange parameters and its effect on biochemistry was small in both clones. However, elevated [O3] decreased the proportion of Rubisco in total soluble proteins and the apparent quantum yield of photosystem II (PSII) photochemistry in light and increased non-photochemical quenching in 2000. The interactive effect of CO2 and O3 was variable. Elevated [O3] decreased chlorophyll concentration only in EO trees, and the EC+EO treatment decreased the total activity of Rubisco and increased the C:N ratio more than the EO treatment alone. The small effect of elevated [O3] on photosynthesis indicates that these young silver birches were fairly tolerant to annual [O3] exposures that were 2-3 times higher than the AOT40 value of 10 ppm.h. set as a critical dose for forest trees.  相似文献   
37.
Four-year-old Norway spruce (Picea abies L. (Karst.)) seedlings were exposed to ambient and elevated (1.5 x ambient in 1997 and 1.6 x ambient in 1998) ozone concentrations [O3] and three nitrogen (N) and two phosphorus (P) availabilities: "optimal" values (control); 70% of the control N and P values (LN and LP); and 150% of the control N value (HN). Treatments were applied in an open-field ozone fumigation facility during the 1997 and 1998 growing seasons. Effects on growth, mineral and pigment concentrations, stomatal conductance and ultrastructure of needles were studied. The HN treatment increased growth significantly, whereas elevated [O3] had a slight or variable impact on growth and biomass allocation in all N treatments. Although there were no significant effects of the LP treatment on plant growth during the second year, there was a reduction in 1-year-old shoot dry mass in the elevated O3 + LP treatment at the end of the experiment. There were no significant treatment effects on mineral concentrations of current-year and 1-year-old needles at the final harvest. In response to the HN treatment, chlorophyll a and b and carotenoid concentrations increased significantly in current-year needles. Chlorophyll a/b ratio decreased in response to elevated [O3] alone, but increased in seedlings in the O(3) + LP treatment. Stomatal conductance of current-year needles decreased with increasing N availability, but increased in response to elevated [O3]. However, the O3-induced increase in stomatal conductance was less in the LN and LP treatments than in the control treatment. In chloroplasts of current-year needles, increased N availability decreased mean starch grain area, but increased the number of plastoglobuli. We conclude that Norway spruce seedlings are relatively tolerant to slightly elevated [O3], and that nitrogen and phosphorus imbalances do not greatly affect the influence of O3 on this species when the exposure lasts for two growing seasons or less.  相似文献   
38.
Human urine was used as a fertilizer in cabbage cultivation and compared with industrial fertilizer and nonfertilizer treatments. Urine achieved equal fertilizer value to industrial fertilizer when both were used at a dose of 180 kg N/ha. Growth, biomass, and levels of chloride were slightly higher in urine-fertilized cabbage than with industrial-fertilized cabbage but clearly differed from nonfertilized. Insect damage was lower in urine-fertilized than in industrial-fertilized plots but more extensive than in nonfertilized plots. Microbiological quality of urine-fertilized cabbage and sauerkraut made from the cabbage was similar to that in the other fertilized cabbages. Furthermore, the level of glucosinolates and the taste of sauerkrauts were similar in cabbages from all three fertilization treatments. Our results show that human urine could be used as a fertilizer for cabbage and does not pose any significant hygienic threats or leave any distinctive flavor in food products.  相似文献   
39.
40.
In the present experiment, the single and combined effects of elevated temperature and ozone (O(3)) on four silver birch genotypes (gt12, gt14, gt15 and gt25) were studied in an open-air field exposure design. Above- and below-ground biomass accumulation, stem growth and soil respiration were measured in 2008. In addition, a (13)C-labelling experiment was conducted with gt15 trees. After the second exposure season, elevated temperature increased silver birch above- and below-ground growth and soil respiration rates. However, some of these variables showed that the temperature effect was modified by tree genotype and prevailing O(3) level. For instance, in gt14 soil respiration was increased in elevated temperature alone (T) and in elevated O(3) and elevated temperature in combination (O(3) + T) treatments, but in other genotypes O(3) either partly (gt12) or totally nullified (gt25) temperature effects on soil respiration, or acted synergistically with temperature (gt15). Before leaf abscission, all genotypes had the largest leaf biomass in T and O(3) + T treatments, whereas at the end of the season temperature effects on leaf biomass depended on the prevailing O(3) level. Temperature increase thus delayed and O(3) accelerated leaf senescence, and in combination treatment O(3) reduced the temperature effect. Photosynthetic : non-photosynthetic tissue ratios (P : nP ratios) showed that elevated temperature increased foliage biomass relative to woody mass, particularly in gt14 and gt12, whereas O(3) and O(3) + T decreased it most clearly in gt25. O(3)-caused stem growth reductions were clearest in the fastest-growing gt14 and gt25, whereas mycorrhizal root growth and sporocarp production increased under O(3) in all genotypes. A labelling experiment showed that temperature increased tree total biomass and hence (13)C fixation in the foliage and roots and also label return was highest under elevated temperature. Ozone seemed to change tree (13)C allocation, as it decreased foliar (13)C excess amount, simultaneously increasing (13)C excess obtained from the soil. The present results suggest that warming has potential to increase silver birch growth and hence carbon (C) accumulation in tree biomass, but the final magnitude of this C sink strength is partly counteracted by temperature-induced increase in soil respiration rates and simultaneous O(3) stress. Silver birch populations' response to climate change will also largely depend on their genotype composition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号