首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   15篇
林业   21篇
农学   5篇
  32篇
综合类   10篇
农作物   6篇
水产渔业   5篇
畜牧兽医   52篇
园艺   5篇
植物保护   8篇
  2023年   2篇
  2022年   6篇
  2021年   9篇
  2020年   7篇
  2019年   16篇
  2018年   15篇
  2017年   9篇
  2016年   7篇
  2015年   12篇
  2014年   8篇
  2013年   8篇
  2012年   6篇
  2011年   6篇
  2010年   7篇
  2009年   4篇
  2008年   4篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2004年   4篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
排序方式: 共有144条查询结果,搜索用时 15 毫秒
91.

Purpose  

The main goal of the study was to compare the potential of conventional and geophysical methods (ground-penetrating radar; GPR) to reconstruct the migration phases of a meandering lowland riverbed: the Obra River in western Poland. The purpose was to verify that the migration phases can be distinguished using the GPR measurement providing near-continuous imaging of alluvial structures and to discuss differences between the spatial extent of the migration phases distinguished using geologic data and GPR surveys.  相似文献   
92.
93.
94.
We monitored leaf phenology and xylogenesis of 12 Pedunculate oaks in northern Poland in 2014. We hypothesized that the individual trees, which differed in size, age and habitat (tree stand or gap), also diverged in terms of the seasonal patterns of leaf phenology and xylogenesis. The samples used for wood formation observations were collected most frequently during the early leaf phenophases (from March to end of June). The transverse sections of the cambial region were cut with a sledge microtome. We counted the number of cambial cells, measured the width of xylem increment and assessed the timing of xylogenesis and earlywood-vessel formation. We found significant differences in leaf phenology and timing of xylogenesis among individual trees. The smallest differences in wood formation among the trees were observed at the beginning of the vegetation season when the first earlywood vessels were detected (9 days). The dates of completion of the first tangential row of earlywood vessels varied by up to 30 days, while for the completion of the entire earlywood dates varied by up to 32 days. The highest productivity of cambial cells (13 cell layers) was observed around the time of bud swelling at mid-April. In the last days of April, the number of cambial cell layers decreased and subsequently increased again when the leaves were nearly fully expanded at the end of May. To summarize, we observed a high seasonal variability in the number of cambial cell layers. Differences in the time of cessation of cambial activity and xylogenesis amounted to 1 month. We conclude that: (1) oak tree-ring widths and earlywood-vessel sizes and numbers may not be sensitive indicators for early spring temperature and spring defoliation; (2) the missing association between leaf phenophases and xylogenesis as well as the phenological variability may be the reasons for the lack of a clear climatic effect on the above-mentioned parameters.  相似文献   
95.

? Key message

Natural regeneration of P. abies (L.) H. Karst. may reach high densities in lower mountain elevations. The highest densities were found in sites with moderate light availability, with low pH, and not near the riverbank. However, age-height classes differed in the predicted magnitude of response, but were consistent in response directions. Mosses and understory species typical of coniferous forests were positively correlated with regeneration density.

? Context

Norway spruce Picea abies (L.) H. Karst. in Central Europe is at risk under climate change scenarios, particularly in mountain regions. Little is known about the impact of environmental factors on the natural regeneration of P. abies in low-elevation mountain forests.

? Aims

We aimed to assess impacts of distance from the riverbank, soil pH, and light availability on natural P. abies regeneration. We hypothesized that (1) natural P. abies regeneration would depend on light availability and soil pH and (2) there are understory plant species which may indicate the microsites suitable for natural regeneration of P. abies.

? Methods

The study was conducted in the Sto?owe Mountains National Park (SW Poland, 600–800 m a.s.l.). We established 160 study plots (25 m2) for natural regeneration, light availability, soil pH, and understory vegetation assessment.

? Results

The highest densities of natural regeneration of P. abies were observed in sites with moderate light availability (0.1–0.2 of open sky) and low pH (3.5–4.5), and located relatively far from the riverbank. Cover of 22 understory plant species were correlated with natural P. abies regeneration densities, mostly positively.

? Conclusion

Different stages of natural regeneration of P. abies revealed different regeneration niches. Most understory plant species (bryophytes and herbs typical of coniferous forests) do not compete with natural regeneration of P. abies.
  相似文献   
96.
97.

Purpose

This study compared the effects of four invasive plants, namely Impatiens glandulifera, Reynoutria japonica, Rudbeckia laciniata, and Solidago gigantea, as well as two native species—Artemisia vulgaris, Phalaris arundinacea, and their mixture on soil physicochemical properties in a pot experiment.

Materials and methods

Plants were planted in pots in two loamy sand soils. The soils were collected from fallows located outside (fallow soil) and within river valley (valley soil) under native plant communities. Aboveground plant biomass, cover, and soil physicochemical properties such as nutrient concentrations, pH, and water holding capacity (WHC) were measured after two growing seasons. Discriminant analysis (DA) was used to identify soil variables responsible for the discrimination between plant treatments. Identified variables were further compared between treatments using one-way ANOVA followed by Tukey’s HSD test.

Results and discussion

Plant biomass, cover, and soil parameters depended on species and soil type. DA effectively separated soils under different plant species. DA on fallow soil data separated R. laciniata from all other treatments, especially I. glandulifera, native species and bare soil, along axis 1 (related mainly to exchangeable K, N-NH4, total P, N-NO3, and WHC). Large differences were found between R. laciniata and S. gigantea as indicated by axis 2 (S-SO4, exchangeable Mg, total P, exchangeable Ca, and total Mg). DA on valley soil data separated R. japonica from all other treatments, particularly S. gigantea, R. laciniata, and native mixture, along axis 1 (N-NO3, total N, S-SO4, total P, pH). Along axis 2 (N-NO3, N-NH4, Olsen P, exchangeable K, WHC), large differences were observed between I. glandulifera and all other invaders.

Conclusions

Plant influence on soil differed both among invasive species and between invasive and native species. Impatiens glandulifera had a relatively weak effect and its soil was similar to both native and bare soils. Multidirectional effects of different invaders resulted in a considerable divergence in soil characteristics. Invasion-driven changes in the soil environment may trigger feedbacks that stabilize or accelerate invasion and hinder re-colonization by native vegetation, which has implications for the restoration of invaded habitats.
  相似文献   
98.
Dyderski  Marcin  Żarnowiec  Jan  Stebel  Adam  Chmura  Damian 《Landscape Ecology》2022,37(7):1871-1884
Landscape Ecology - The spread of invasive bryophytes in Central Europe started in the 2nd half of the twentieth century. However, still it is not known which climatic and land-use factors shape...  相似文献   
99.
Follicular growth after antrum formation is determined by follicle-stimulating hormone (FSH). Only two ways are possible for recruited follicles, continuing development or atresia. In gilts, intensive ovarian follicular growth begins between 60 and 100 days of age, and fluctuations of the ovarian morphological status last about 20 days; however, at that time there are no really large follicles. Final follicular development is under luteinising hormone (LH) control; this is why the attainment of puberty is related to an increase in serum oestradiol to a level that causes a preovulatory surge of this gonadotropin. The pool of follicles at the beginning of the oestrous cycle is about 30-40, most of which are small (< 3 mm) and growing. Then, the pool of follicles increases to about 80 in the mid-luteal phase but about 50 of them are small and 30 are medium sized (3-6.9 mm). Some of these follicles are in the growing phase, but some are atretic. Between days 7 and 15 of the oestrous cycle the percentage of atretic follicles fluctuates between 12 and 73%. At that time there are no large (> 7 mm) follicles because of the suppressing effect of progesterone. The number of small follicles declines after luteolysis. From the pool of medium follicles, large follicles are selected under the influence of LH, but about 70% of the medium-sized follicles become atretic. Because of the long-lasting selection process there is a significant heterogeneity in the diameter of large follicles in oestrus. However, the number of follicles correlates with the number of corpora lutea after ovulation. Individual follicular development and the relationship between follicles are still poorly known. The use of ultrasonography may give a closer insight into these phenomena.  相似文献   
100.
Despite technological advances in global agriculture in recent years, the problem of pathogenic fungi in the production of cereal crops continues to be an issue. Currently, the high variability of weather factors that are considered unusual for specific locations affect the growth and physiology of pathogens attacking cereal crops. One of the most common plant protection methods is the use of synthetic pesticides; however, there is growing controversy over this approach due to the build-up of pesticides in the environment and the presence of their residues in food. The purpose of this literature review is to explore the current state of knowledge regarding the potential of using Trichoderma species as a biostimulator and for the biological protection of cereal crops against pathogenic fungi. Trichoderma fungi—through mycoparasitism, antibiosis and competition for space and nutrients—help to inhibit the growth of pathogens and have a positive impact on the growth of plants, including their root system, which is considered a desirable effect during drought episodes. It has also been demonstrated that Trichoderma fungi can convert Fusarium toxins into new metabolites that can be of lower toxicity. However, the highly limited number of in vivo studies investigating the use of these fungi for biocontrol in cereal crops remains an obstacle to the commercialization of Trichoderma fungi. It appears that the determination of their effectiveness in the biocontrol of cereal crops under variable weather and climate conditions presents a considerable challenge.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号