首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17539篇
  免费   33篇
  国内免费   1篇
林业   3697篇
农学   1308篇
基础科学   138篇
  2981篇
综合类   768篇
农作物   2135篇
水产渔业   1893篇
畜牧兽医   1631篇
园艺   1114篇
植物保护   1908篇
  2023年   4篇
  2022年   20篇
  2021年   36篇
  2020年   24篇
  2019年   22篇
  2018年   2752篇
  2017年   2718篇
  2016年   1204篇
  2015年   97篇
  2014年   50篇
  2013年   124篇
  2012年   848篇
  2011年   2178篇
  2010年   2125篇
  2009年   1299篇
  2008年   1372篇
  2007年   1639篇
  2006年   108篇
  2005年   182篇
  2004年   172篇
  2003年   216篇
  2002年   114篇
  2001年   37篇
  2000年   83篇
  1999年   20篇
  1998年   8篇
  1997年   6篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   13篇
  1992年   14篇
  1991年   4篇
  1990年   5篇
  1989年   12篇
  1988年   15篇
  1987年   10篇
  1986年   2篇
  1985年   3篇
  1983年   3篇
  1980年   2篇
  1978年   2篇
  1977年   6篇
  1972年   2篇
  1969年   1篇
  1968年   5篇
  1967年   2篇
  1965年   1篇
  1948年   1篇
  1895年   1篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
71.
Ferret polymorphonuclear cells (PMNs) and peripheral blood mononuclear cells (PBMCs) were separated from whole blood by density gradient centrifugation. Using a 50% Percoll solution (density=1.066), PMNs and PBMCs were successfully isolated after centrifugation; the purities of the PMNs and PBMCs were 94.2% and 95.6%, respectively. To evaluate the function of isolated ferret PMNs, we measured the superoxide generation with a MCLA-dependent chemiluminescence assay. The isolated ferret PMNs responded to phorbol 12-myristate 13-acetate (PMA) with kinetics similar to that of human PMNs. The ferret PMNs did not respond to N-formyl-Met-Leu-Phe (fMLF), unlike human PMNs, which rapidly responded. Thus, authors established a method for the rapid separation of highly purified populations of functional PMNs from the whole blood of ferrets.  相似文献   
72.
Previous our studies have shown that CD44, the principal receptor for hyaluronan, is present on cumulus cells during oocyte maturation. Although hyaluronan-CD44 interaction has been implicated in cumulus expansion and/or oocyte maturation, the full significance of CD44 remains unknown. The objective of the present study was to further investigate the role of CD44 in cumulus expansion and oocyte maturation in pigs. We demonstrate here in that CD44 has a key role in oocyte maturation but not in cumulus expansion. Previous studies have reported the physiological significance of cumulus expansion in oocyte maturation. However, our results suggest that cumulus expansion is a necessary condition for oocyte maturation, but that it is not sufficient on its own. Furthermore, western blot analysis demonstrated that the CD44 of the in vitro-matured cumulus-oocyte complexes (COCs) had a larger molecular weight and more terminal sialic acid, which has been proven to inhibit the hyaluronan-binding ability of the receptor, than the CD44 of the in vivo-matured COCs, indicating that the hyaluronan-CD44 interactions during in vitro maturation might be insufficient compared with those in vivo. The insufficient interactions of hyaluronan-CD44 during in vitro maturation may cause the inferior capacity of fertilization and development of oocytes matured in vitro.  相似文献   
73.
Dendritic cell (DC) vaccination is one of the most attractive immunotherapies for malignancies in dogs. To examine the differences in DC-mediated immune responses from different types of malignancies in dogs, we vaccinated dogs using autologous DCs pulsed with keyhole limpet hemocyanin (KLH) and cell lysate prepared from squamous cell carcinoma SCC2/88 (SCC-KLH-DC), histiocytic sarcoma CHS-5 (CHS-KLH-DC), or B cell leukemia GL-1 (GL-KLH-DC) in vitro. In vivo inductions of immune responses against these tumor cells were compared by the delayed-type hypersensitivity (DTH) skin test. The DTH response against SCC2/88 cells were observed in dogs vaccinated with autologous SCC-KLH-DC, while the response was undetectable against CHS-5 and GL-1 cells in dogs vaccinated with autologous CHS-KLH-DC and GL-KLH-DC. Skin biopsies taken from DTH challenge sites were then examined for immunohistochemistry, and recruitment of CD8 and CD4 T cells was detected at the site where SCC2/88 cells were inoculated in dogs vaccinated with SCC-KLH-DC. By contrast, neither CD8 nor CD4 T cell infiltration was found at the DTH challenge site in the dogs vaccinated with CHS-KLH-DC or GL-KLH-DC. These findings may reflect that the efficacy of immune induction by DC vaccination varies among tumor types and that immune responses could be inducible in squamous cell carcinoma. Our results encouraged further investigation of therapeutic vaccination for dogs with advanced squamous cell carcinoma in clinical trials.  相似文献   
74.
Leptin, a pleiotropic hormone regulating food intake and energy expenditure, has been shown to directly modulate human polymorphonuclear neutrophil (PMN) functions or indirectly through the action of tumor necrosis factor-alpha (TNF-alpha). Bovine PMN have considerable different characteristics from human PMN. For example, it does not respond to N-formyl-Methionyl-Leucyl-phenylalanine, a well known human PMN activator. In the present study, we tested the effects of leptin and TNF-alpha on superoxide production and degranulation of bovine peripheral PMN, in which both long isoform of leptin receptor (Ob-Rb) and TNF receptor 1 were expressed. Human leptin, human TNF-alpha, phorbol myristate acetate (PMA) and opsonized zymosan particles (OZP) did not stimulate degranulation responses, while zymosan-activated serum (ZAS) did. Neither leptin nor TNF-alpha enhanced the ZAS-induced degranulation responses. TNF-alpha, PMA, OZP and ZAS increased superoxide production in different magnitudes, whereas leptin did not. TNF-alpha, but not leptin, enhanced OZP- and ZAS-induced superoxide production, possibly, in part due to facilitating translocation of p47(phox), a component of NADPH oxidase. These results indicate that, unlike in human PMN, leptin does not have any direct effect on degranulation and superoxide production in bovine PMN, although TNF-alpha influences superoxide production.  相似文献   
75.
76.
Irrigation techniques that reduce water applications are increasingly applied in areas with scarce water resources. In this study, the effect of two regulated deficit irrigation (RDI) strategies on peach [Prunus persica (L.) Batsch cv. “Catherine”] performance was studied over three growing seasons. The experimental site was located in Murcia (SE Spain), a Mediterranean region. Two RDI strategies (restricting water applications at stage II of fruit development and postharvest) based on stem water potential (Ψs) thresholds (?1.5 and ?1.8 MPa during fruit growth and ?1.5 and ?2.0 MPa during postharvest) were compared to a fully irrigated control. Soil water content (θv), Ψs, gas exchange parameters, vegetative growth, crop load, yield and fruit quality were determined. RDI treatments showed significantly lower values of θv and Ψs than control trees when irrigation water was restricted, causing reductions in stomatal conductance and photosynthesis rates. Vegetative growth was reduced by RDI, as lower shoot lengths and pruning weights were observed under those treatments when compared to control. However, fruit size and yield were unaffected, and fruit quality was slightly improved by RDI. Water savings from 43 to 65 % were achieved depending on the year and the RDI strategy, and no negative carryover effect was detected during the study period. In conclusion, RDI strategies using Ψs thresholds for scheduling irrigation in mid–late maturing peach trees under Mediterranean conditions are viable options to save water without compromising yield and even improving fruit quality.  相似文献   
77.
The use of overhead trellis systems for the production of dry-on-vine (DOV) raisins and table grapes in California is expanding. Studies were conducted from 2006 to 2009 using Thompson Seedless grapevines grown in a weighing lysimeter trained to an overhead arbor trellis and farmed as DOV raisins for the first two years and for use as table grapes thereafter. Maximum canopy coverage for the two lysimeter vines across years was in excess of 80 %. Seasonal (15 March–31 October) evapotranspiration for the lysimeter vines (ETLys) was 952 mm in 2007 (farmed as DOV raisins) and 943 and 952 mm (when farmed as table grapes). The maximum crop coefficient (K cLys) across all 4 years ranged from 1.3 to 1.4. These maximum values were similar to those estimated using the relationship where K c is a function of the amount of shaded area measured beneath the canopy at solar noon (K c = 0.017 × percent shaded area). Covering the lysimeter’s soil surface with plastic (and then removing it) numerous times during the 2009 growing season (1 June–14 September) reduced ETLys from an average of 6.4 to 5.6 mm day?1 and the K c from 1.07 to 0.93. A seasonal basal K c (K cb) was calculated for grapevines using an overhead trellis system with a 13 % reduction in the K cLys across the growing season.  相似文献   
78.
In the High Plains, corn (Zea mays L.) is an important commodity for livestock feed. However, limited water resources and drought conditions continue to hinder corn production. Drought-tolerant (DT) corn hybrids could help maintain high yields under water-limited conditions, though consistent response of such hybrids is unverified. In this two-year study, the effects of three irrigation treatments were investigated for a DT and conventional maize hybrid, Pioneer AQUAMax P0876HR and Pioneer 33Y75, respectively. In 2013, the drier of the 2 years, irrigation amounts and crop water use (ETc) were greater for the conventional hybrid, but grain water use efficiency (WUE) and harvest index were significantly greater for the DT hybrid. In 2014, grain yields and WUE were not significantly different between hybrids. However, irrigation amounts, ETc and biomass yields were greater for the conventional hybrid. Results from both years indicate that the DT hybrid required less water to maximize grain yield as compared to the conventional hybrid. Producing relatively high yields with reduced amounts of water may provide a means for producers to continue corn production in a semiarid environment with declining water supplies.  相似文献   
79.
Intercropping, drip irrigation, and the use of plastic mulch are important management practices, which can, when utilized simultaneously, increase crop production and save irrigation water. Investigating soil water dynamics in the root zone of the intercropping field under such conditions is essential in order to understand the combined effects of these practices and to promote their wider use. However, not much work has been done to investigate soil water dynamics in the root zone of drip-irrigated, strip intercropping fields under plastic mulch. Three field experiments with different irrigation treatments (high T1, moderate T2, and low T3) were conducted to evaluate soil water contents (SWC) at different locations, for different irrigation treatments, and with respect to dripper lines and plants (corn and tomatoes). Experimental data were then used to calibrate the HYDRUS (2D/3D) model. Comparison between experimental data and model simulations showed that HYDRUS (2D/3D) described different irrigation events and SWC in the root zone well, with average relative errors of 10.8, 9.5, and 11.6 % for irrigation treatments T1, T2, and T3, respectively, and with corresponding root mean square errors of 0.043, 0.035, and 0.040 cm3 cm?3, respectively. The results showed that the SWC in the shallow root zone (0–40 cm) was lower under non-mulched locations than under mulched locations, irrespective of the irrigation treatment, while no significant differences in the SWC were observed in the deeper root zone (40–100 cm). The SWC in the shallow root zone was significantly higher for the high irrigation treatment (T1) than for the low irrigation treatment, while, again, no differences were observed in the deeper root zone. Simulations of two-dimensional SWC distributions revealed that the low irrigation treatment (T3) produced serious severe water stress (with SWCs near the wilting point) in the 30–40 cm part of the root zone, and that using separate drip emitter lines for each crop is well suited for producing the optimal soil water distribution pattern in the root zone of the intercropping field. The results of this study can be very useful in designing an optimal irrigation plan for intercropped fields.  相似文献   
80.
A model for optimal operation of water supply/irrigation systems of various water quality sources, with treatment plants, multiple water quality conservative factors, and dilution junctions is presented. The objective function includes water cost at the sources, water conveyance costs which account for the hydraulics of the network indirectly, water treatment cost, and yield reduction costs of irrigated crops due to irrigation with poor quality water. The model can be used for systems with supply by canals as well as pipes, which serve both drinking water demands of urban/rural consumers and field irrigation requirements. The general nonlinear optimization problem has been simplified by decomposing it to a problem with linear constraints and nonlinear objective function. This problem is solved using the projected gradient method. The method is demonstrated for a regional water supply system in southern Israel that contains 39 pipes, 37 nodes, 11 sources, 10 agricultural consumers, and 4 domestic consumers. The optimal operation solution is described by discharge and salinity values for all pipes of the network. Sensitivity of the optimal solution to changes in the parameters is examined. The solution was found to be sensitive to the upper limit on drinking water quality, with total cost being reduced by 5% as the upper limit increases from 260 to 600 mg Cl l–1. The effect of income from unit crop yield is more pronounced. An increase of income by a factor of 20 results in an increase of the total cost by a factor of 3, thus encouraging more use of fresh water as long as the marginal cost of water supply is smaller than the marginal decrease in yield loss. The effect of conveyance cost becomes more pronounced as its cost increases. An increase by a factor of 100 results in an increase of the total cost by about 14%. The network studied has a long pipe that connects two distinct parts of the network and permits the supply of fresh water from one part to the other. Increasing the maximum permitted discharge in this pipe from 0 to 200 m3 h–1 reduces the total cost by 11%. Increasing the maximum discharge at one of the sources from 90 to 300 m3 h–1 reduces the total cost by about 8%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号