全文获取类型
收费全文 | 477篇 |
免费 | 26篇 |
专业分类
林业 | 61篇 |
农学 | 14篇 |
基础科学 | 4篇 |
72篇 | |
综合类 | 54篇 |
农作物 | 29篇 |
水产渔业 | 62篇 |
畜牧兽医 | 139篇 |
园艺 | 32篇 |
植物保护 | 36篇 |
出版年
2022年 | 7篇 |
2021年 | 11篇 |
2020年 | 8篇 |
2019年 | 20篇 |
2018年 | 11篇 |
2017年 | 10篇 |
2016年 | 12篇 |
2015年 | 16篇 |
2014年 | 14篇 |
2013年 | 24篇 |
2012年 | 24篇 |
2011年 | 26篇 |
2010年 | 18篇 |
2009年 | 17篇 |
2008年 | 28篇 |
2007年 | 26篇 |
2006年 | 29篇 |
2005年 | 22篇 |
2004年 | 25篇 |
2003年 | 16篇 |
2002年 | 11篇 |
2000年 | 9篇 |
1999年 | 5篇 |
1998年 | 3篇 |
1997年 | 2篇 |
1996年 | 6篇 |
1995年 | 9篇 |
1994年 | 4篇 |
1993年 | 2篇 |
1992年 | 3篇 |
1991年 | 5篇 |
1990年 | 5篇 |
1989年 | 9篇 |
1988年 | 2篇 |
1987年 | 6篇 |
1986年 | 5篇 |
1985年 | 3篇 |
1984年 | 5篇 |
1983年 | 3篇 |
1981年 | 2篇 |
1980年 | 2篇 |
1978年 | 5篇 |
1977年 | 2篇 |
1974年 | 3篇 |
1973年 | 2篇 |
1969年 | 2篇 |
1962年 | 2篇 |
1960年 | 3篇 |
1959年 | 2篇 |
1958年 | 2篇 |
排序方式: 共有503条查询结果,搜索用时 15 毫秒
501.
Uneven moisture patterns in water repellent soils 总被引:2,自引:0,他引:2
In the Netherlands, water repellent soils are widespread and they often show irregular moisture patterns, which lead to accelerated transport of water and solutes to the groundwater and surface water. Under grasscover, spatial variability in soil moisture content is high due to fingered flow, in arable land vegetation and microtopography play a dominant role. Examples are given of uneven soil moisture patterns in water repellent sand, loam, clay and peat soils with grasscover, and in cropped water repellent sandy soils. In addition, the influence of fungi on inducing soil moisture patterns is illustrated as well. 相似文献
502.
取美洲黑杨(母本)和青杨(父本)杂交获得的F2群体样本80株,应用RAPD标记检测与F2群体3个数量性状(苗高、地径和封顶期)有关的QTLs。在F2九体中,一年生苗高、地径和封顶期性状表现显著分离,基本符合正态分布。单因子方差分析检测出与苗高、地径和封顶期性状相关的7个、6个和3个标记座位。并计算了各标记对相关性状变异的贡献率。与数量性状相关的标记有不同的亲本来源。t检查结果各标记显带型和不显带型 相似文献
503.
Dawson TE Burgess SS Tu KP Oliveira RS Santiago LS Fisher JB Simonin KA Ambrose AR 《Tree physiology》2007,27(4):561-575
It is commonly assumed that transpiration does not occur at night because leaf stomata are closed in the dark. We tested this assumption across a diversity of ecosystems and woody plant species by various methods to explore the circumstances when this assumption is false. Our primary goals were: (1) to evaluate the nature and magnitude of nighttime transpiration, E(n), or stomatal conductance, g(n); and (2) to seek potential generalizations about where and when it occurs. Sap-flow, porometry and stable isotope tracer measurements were made on 18 tree and eight shrub species from seven ecosystem types. Coupled with environmental data, our findings revealed that most of these species transpired at night. For some species and circumstances, nighttime leaf water loss constituted a significant fraction of total daily water use. Our evidence shows that E(n) or g(n) can occur in all but one shrub species across the systems we investigated. However, under conditions of high nighttime evaporative demand or low soil water availability, stomata were closed and E(n) or g(n) approached zero in eleven tree and seven shrub species. When soil water was available, E(n) or g(n) was measurable in these same species demonstrating plasticity for E(n) or g(n). We detected E(n) or g(n) in both trees and shrubs, and values were highest in plants from sites with higher soil water contents and in plants from ecosystems that were less prone to atmospheric or soil water deficits. Irrespective of plant or ecosystem type, many species showed E(n) or g(n) when soil water deficits were slight or non-existent, or immediately after rainfall events that followed a period of soil water deficit. The strongest relationship was between E(n) or g(n) and warm, low humidity and (or) windy (> 0.8 m s(-1)) nights when the vapor pressure deficit remained high (> 0.2 kPa in wet sites, > 0.7 kPa in dry sites). Why E(n) or g(n) occurs likely varies with species and ecosystem type; however, our data support four plausible explanations: (1) it may facilitate carbon fixation earlier in the day because stomata are already open; (2) it may enhance nutrient supply to distal parts of the crown when these nutrients are most available (in wet soils) and transport is rapid; (3) it may allow for the delivery of dissolved O(2) via the parenchyma to woody tissue sinks; or (4) it may occur simply because of leaky cuticles in older leaves or when stomata cannot close fully because of obstructions from stomatal (waxy) plugs, leaf endophytes or asymmetrical guard cells (all non-adaptive reasons). We discuss the methodological, ecophysiological, and theoretical implications of the occurrence of E(n) or g(n) for investigations at a variety of scales. 相似文献