首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   477篇
  免费   26篇
林业   61篇
农学   14篇
基础科学   4篇
  72篇
综合类   54篇
农作物   29篇
水产渔业   62篇
畜牧兽医   139篇
园艺   32篇
植物保护   36篇
  2022年   7篇
  2021年   11篇
  2020年   8篇
  2019年   20篇
  2018年   11篇
  2017年   10篇
  2016年   12篇
  2015年   16篇
  2014年   14篇
  2013年   24篇
  2012年   24篇
  2011年   26篇
  2010年   18篇
  2009年   17篇
  2008年   28篇
  2007年   26篇
  2006年   29篇
  2005年   22篇
  2004年   25篇
  2003年   16篇
  2002年   11篇
  2000年   9篇
  1999年   5篇
  1998年   3篇
  1997年   2篇
  1996年   6篇
  1995年   9篇
  1994年   4篇
  1993年   2篇
  1992年   3篇
  1991年   5篇
  1990年   5篇
  1989年   9篇
  1988年   2篇
  1987年   6篇
  1986年   5篇
  1985年   3篇
  1984年   5篇
  1983年   3篇
  1981年   2篇
  1980年   2篇
  1978年   5篇
  1977年   2篇
  1974年   3篇
  1973年   2篇
  1969年   2篇
  1962年   2篇
  1960年   3篇
  1959年   2篇
  1958年   2篇
排序方式: 共有503条查询结果,搜索用时 15 毫秒
501.
Uneven moisture patterns in water repellent soils   总被引:2,自引:0,他引:2  
In the Netherlands, water repellent soils are widespread and they often show irregular moisture patterns, which lead to accelerated transport of water and solutes to the groundwater and surface water. Under grasscover, spatial variability in soil moisture content is high due to fingered flow, in arable land vegetation and microtopography play a dominant role. Examples are given of uneven soil moisture patterns in water repellent sand, loam, clay and peat soils with grasscover, and in cropped water repellent sandy soils. In addition, the influence of fungi on inducing soil moisture patterns is illustrated as well.  相似文献   
502.
用RAPD标记检测与杨树生长和物候期有关的QTLs   总被引:3,自引:0,他引:3       下载免费PDF全文
取美洲黑杨(母本)和青杨(父本)杂交获得的F2群体样本80株,应用RAPD标记检测与F2群体3个数量性状(苗高、地径和封顶期)有关的QTLs。在F2九体中,一年生苗高、地径和封顶期性状表现显著分离,基本符合正态分布。单因子方差分析检测出与苗高、地径和封顶期性状相关的7个、6个和3个标记座位。并计算了各标记对相关性状变异的贡献率。与数量性状相关的标记有不同的亲本来源。t检查结果各标记显带型和不显带型  相似文献   
503.
Nighttime transpiration in woody plants from contrasting ecosystems   总被引:2,自引:0,他引:2  
It is commonly assumed that transpiration does not occur at night because leaf stomata are closed in the dark. We tested this assumption across a diversity of ecosystems and woody plant species by various methods to explore the circumstances when this assumption is false. Our primary goals were: (1) to evaluate the nature and magnitude of nighttime transpiration, E(n), or stomatal conductance, g(n); and (2) to seek potential generalizations about where and when it occurs. Sap-flow, porometry and stable isotope tracer measurements were made on 18 tree and eight shrub species from seven ecosystem types. Coupled with environmental data, our findings revealed that most of these species transpired at night. For some species and circumstances, nighttime leaf water loss constituted a significant fraction of total daily water use. Our evidence shows that E(n) or g(n) can occur in all but one shrub species across the systems we investigated. However, under conditions of high nighttime evaporative demand or low soil water availability, stomata were closed and E(n) or g(n) approached zero in eleven tree and seven shrub species. When soil water was available, E(n) or g(n) was measurable in these same species demonstrating plasticity for E(n) or g(n). We detected E(n) or g(n) in both trees and shrubs, and values were highest in plants from sites with higher soil water contents and in plants from ecosystems that were less prone to atmospheric or soil water deficits. Irrespective of plant or ecosystem type, many species showed E(n) or g(n) when soil water deficits were slight or non-existent, or immediately after rainfall events that followed a period of soil water deficit. The strongest relationship was between E(n) or g(n) and warm, low humidity and (or) windy (> 0.8 m s(-1)) nights when the vapor pressure deficit remained high (> 0.2 kPa in wet sites, > 0.7 kPa in dry sites). Why E(n) or g(n) occurs likely varies with species and ecosystem type; however, our data support four plausible explanations: (1) it may facilitate carbon fixation earlier in the day because stomata are already open; (2) it may enhance nutrient supply to distal parts of the crown when these nutrients are most available (in wet soils) and transport is rapid; (3) it may allow for the delivery of dissolved O(2) via the parenchyma to woody tissue sinks; or (4) it may occur simply because of leaky cuticles in older leaves or when stomata cannot close fully because of obstructions from stomatal (waxy) plugs, leaf endophytes or asymmetrical guard cells (all non-adaptive reasons). We discuss the methodological, ecophysiological, and theoretical implications of the occurrence of E(n) or g(n) for investigations at a variety of scales.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号